平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),M是直線l:x=3上的動(dòng)點(diǎn),過(guò)點(diǎn)F(1,0)作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)P(m,n).則m,n滿(mǎn)足的關(guān)系式為   
【答案】分析:設(shè)點(diǎn)M(3,k),則由PF⊥OM可得 =-1,化簡(jiǎn)可得 nk=3-3m ①.再由題意可得△OPM為直角三角形,故由勾股定理可得OP2+PM2=OM2,化簡(jiǎn)可得 2m2+2n2-6m-2nk=0 ②.再把①代入②化簡(jiǎn)可得結(jié)果.
解答:解:設(shè)點(diǎn)M(3,k),則由PF⊥OM可得 =-1,
化簡(jiǎn)可得 nk=3-3m ①.
再由直徑對(duì)的圓周角為直角,可得OP⊥PM,△OPM為直角三角形,故由勾股定理可得
OP2+PM2=OM2,即 m2+n2+(m-3)2+(n-k)2=32+k2
化簡(jiǎn)可得 2m2+2n2-6m-2nk=0 ②.
再把①代入②化簡(jiǎn)可得 m2+n2=3,
故答案為 m2+n2=3.
點(diǎn)評(píng):本題主要考查兩條直線垂直的性質(zhì),直線和圓相交的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(3,1)、B(-1,3),若點(diǎn)C滿(mǎn)足
OC
OA
OB
,其中α、β∈R,且α+β=1,則點(diǎn)C的軌跡方程為( 。
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知水平地面上有一籃球,在斜平行光線的照射下,其陰影為一橢圓(如圖),在平面直角坐標(biāo)系中,O為原點(diǎn),設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),籃球與地面的接觸點(diǎn)為H,則|OH|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,O(0,0),P(6,8),將向量
OP
按逆時(shí)針旋轉(zhuǎn)
π
4
后,得向量
OQ
則點(diǎn)Q的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0)、B(0,-2),點(diǎn)C滿(mǎn)足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點(diǎn)M、N,且以MN為直徑的圓過(guò)原點(diǎn),求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•海淀區(qū)二模)平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩定點(diǎn)A(1,0)、B(0,-1),動(dòng)點(diǎn)P(x,y)滿(mǎn)足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相異兩點(diǎn)M、N.若以MN為直徑的圓經(jīng)過(guò)原點(diǎn),且雙曲線C的離心率等于
3
,求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案