【題目】設等差數(shù)列的前項和為,已知, .
(1)求;
(2)若從中抽取一個公比為的等比數(shù)列,其中,且,
(i)求的通項公式;
(ii)記數(shù)列的前項和為,是否存在正整數(shù),使得成等差數(shù)列?若存在,求出滿足的條件;若不存在,請說明理由.
【答案】(1)(2)(ⅰ)(ⅱ)存在正整數(shù),且,使得成等差數(shù)列。
【解析】
(1)先根據(jù)條件列出關于公差與首項的方程組,解得結果代入等差數(shù)列通項公式即可.
(2)(i)由題可知,又因為,則,,則可求出,根據(jù)等比數(shù)列的通項公式即可得出的通項公式;
(ii)根據(jù)等比數(shù)列的前項和公式得出,又判斷是遞增的,
假設存在正整數(shù)且,使得成等差數(shù)列,由等差中項可得,代入,可得當且僅當,使得成等差數(shù)列.
解:(1)等差數(shù)列的公差設為,前項和為,
由,,可得,可得,
;
(2)(i)若從中抽取一個公比為的等比數(shù)列,
其中,且,
可得 , ,解得,
,即有;
(ii)數(shù)列的前項和,
由,
可得遞增,
假設存在正整數(shù)且,使得成等差數(shù)列,
可得,即 ,
可得,由,可得,
則,得 ,
故不存在,使得成等差數(shù)列;
若顯然符合題意,
綜上可得存在正整數(shù),且,使得成等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,平面四邊形ABCD中,,,且BC=CD.將CBD沿BD折成如圖2所示的三棱錐,使二面角的大小為.
(1)證明:;
(2)求直線BC'與平面C'AD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汕頭市有一塊如圖所示的海岸,,為岸邊,岸邊形成角,現(xiàn)擬在此海岸用圍網(wǎng)建一個養(yǎng)殖場,現(xiàn)有以下兩個方案:
方案l:在岸邊,上分別取點,,用長度為的圍網(wǎng)依托岸邊圍成三角形(為圍網(wǎng)).
方案2:在的平分線上取一點,再從岸邊,上分別取點,,使得,用長度為的圍網(wǎng)依托岸邊圍成四邊形(,為圍網(wǎng)).
記三角形的面積為,四邊形的面積為. 請分別計算,的最大值,并比較哪個方案好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數(shù)所占比例分別為,,,,,等級考試科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法分別轉換到、、、、五個分數(shù)區(qū)間,得到考生的等級分,等級轉換分滿分為100分.具體轉換分數(shù)區(qū)間如下表:
等級 | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉換法是通過公式計算:
其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉換分,當原始分為,時,等級分分別為、
假設小南的化學考試成績信息如下表:
考生科目 | 考試成績 | 成績等級 | 原始分區(qū)間 | 等級分區(qū)間 |
化學 | 75分 | 等級 |
設小南轉換后的等級成績?yōu)?/span>,根據(jù)公式得:,
所以(四舍五入取整),小南最終化學成績?yōu)?7分.
已知某年級學生有100人選了化學,以半期考試成績?yōu)樵汲煽冝D換本年級的化學等級成績,其中化學成績獲得等級的學生原始成績統(tǒng)計如下表:
成績 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學成績獲得等級的學生中任取2名,求恰好有1名同學的等級成績不小于96分的概率;
(2)從化學成績獲得等級的學生中任取5名,設5名學生中等級成績不小于96分人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年10月,德國爆發(fā)出“芳香烴門”事件,即一家權威的檢測機構在德國銷售的奶粉中隨機抽檢了16款(德國4款,法國8款、荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴重危害嬰幼兒的成長,有些奶粉已經遠銷至中國,地區(qū)聞訊后,立即組織相關檢測員對這8款品牌的奶粉進行抽檢,已知該地區(qū)一嬰幼兒用品商店在售某品牌的奶粉共6袋,這6袋奶粉中有4袋含有芳香礦物油成分,則隨機抽取3袋恰有2袋含有芳香經礦物油成分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第列的數(shù)記為,比如,,,若,則( )
A.64B.65C.71D.72
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點的動直線相交于點,與橢圓分別交于與不同四點,直線的斜率滿足, 已知與軸重合時, .
(1)求橢圓的方程;
(2)是否存在定點使得為定值,若存在,求出點坐標并求出此定值,若不存在,
說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)滿足且是它的零點,則函數(shù)是“有趣的”,例如就是“有趣的”,已知是“有趣的”.
(1)求出b、c并求出函數(shù)的單調區(qū)間;
(2)若對于任意正數(shù)x,都有恒成立,求參數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com