【題目】某校高一年級(jí)共有名學(xué)生,其中男生名,女生名,該校組織了一次口語模擬考試(滿分為分).為研究這次口語考試成績(jī)?yōu)楦叻质欠衽c性別有關(guān),現(xiàn)按性別采用分層抽樣抽取名學(xué)生的成績(jī),按從低到高分成,,,,,,七組,并繪制成如圖所示的頻率分布直方圖.已知的頻率等于的頻率,的頻率與的頻率之比為,成績(jī)高于分的為“高分”.
(1)估計(jì)該校高一年級(jí)學(xué)生在口語考試中,成績(jī)?yōu)椤案叻帧钡娜藬?shù);
(2)請(qǐng)你根據(jù)已知條件將下列列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“該校高一年級(jí)學(xué)生在本次口語考試中成績(jī)及格(分以上(含分)為及格)與性別有關(guān)”?
口語成績(jī)及格 | 口語成績(jī)不及格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)根據(jù)題意,可設(shè)的頻率為,由頻率性質(zhì),即各組頻率之和為1,建立關(guān)于的方程,求出未知數(shù)的值,從而算出的頻率,由此問題可得解;(2)由(1),根據(jù)已知條件,結(jié)合男女生的人數(shù)比,即可完成列聯(lián)表,再根據(jù)所提供的觀測(cè)值的計(jì)算公式,算出觀測(cè)值,再比對(duì)臨界值表,從而可問題可得解.
試題解析:(1)設(shè)的頻率為,
則的頻率為,的頻率為.
則,
解得.
故的頻率為,的頻率為.
故估計(jì)該校高一年級(jí)學(xué)生在口語考試中,成績(jī)?yōu)椤案叻帧钡念l率為.
故估計(jì)該校高一年級(jí)學(xué)生在口語考試中,成績(jī)?yōu)椤案叻帧钡娜藬?shù)為.
(2)根據(jù)已知條件得列聯(lián)表如下:
口語成績(jī)及格 | 口語成績(jī)不及格 | 合計(jì) | |
男生 | 40 | ||
女生 | 60 | ||
合計(jì) | 70 | 30 |
因?yàn)?/span>,
所以有的把握認(rèn)為“該校高一年級(jí)學(xué)生在本次口語考試中成績(jī)及格與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)在軸上的投影為,動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.
(1)求的方程;
(2)設(shè)與軸正半軸的交點(diǎn)為,過點(diǎn)的直線的斜率為,與交于另一點(diǎn)為.若以點(diǎn)為圓心,以線段長(zhǎng)為半徑的圓與有4個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行籃球三分球投籃比賽,甲每次投中的概率為,乙每次投中的概率為,每人分別進(jìn)行三次投籃.
(I)記甲投中的次數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投進(jìn)2次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)的圖象在處的切線斜率為1,求實(shí)數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的一個(gè)內(nèi)角為,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則的面積為( )
A. 15 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,PA⊥平面ABC,△ABC是邊長(zhǎng)為2的等邊三角形,且三棱錐P﹣ABC的外接球表面積為,則直線PC與平面PAB所成角的正切值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱柱中,,為中點(diǎn),為中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),M是PD的中點(diǎn).
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com