(理)已知方程x4+y2=1,給出下列結(jié)論:①它的圖形關(guān)于x軸對(duì)稱;②它的圖形關(guān)于y軸對(duì)稱;③它的圖形是一條封閉的曲線,且面積小于π;④它的圖形是一條封閉的曲線,且面積大于π.真命題的序號(hào)是           .
  ①②④
.①與②顯然正確;又,,即-1≤x≤1且-1≤y≤1.∴圖形應(yīng)是封閉曲線;又令時(shí),,對(duì)比圓x2+y2=1上點(diǎn),知點(diǎn)在圓外,
∴面積S>πr2=π.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與圓沒有公共點(diǎn),則以(m,n)為點(diǎn)P的坐標(biāo),過點(diǎn)P的一條直線與橢圓的公共點(diǎn)有_________個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線和雙曲線都經(jīng)過點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823120307880187.gif" style="vertical-align:middle;" />軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)已知橢圓C的焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓C的右焦點(diǎn)作直線交橢圓C于A、B兩點(diǎn),交y軸于M,若為定值嗎?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知直線l與橢圓(ab>0)相交于不同兩點(diǎn)A、B,,且,以M為焦點(diǎn),以橢圓的右準(zhǔn)線為相應(yīng)準(zhǔn)線的雙曲線與直線l相交于N(4,1). (I)求橢圓的離心率; (II)設(shè)雙曲線的離心率為,記,求的解析式,并求其定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)P(3,0),點(diǎn)A,B分別在x軸負(fù)半軸和y軸上,且 當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí)記點(diǎn)C的軌跡為E.(Ⅰ)求曲線E的方程;(Ⅱ)已知向量為方向向量的直線l交曲線E于不同的兩點(diǎn)M,N,若D(-1,0),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為橢圓左、右焦點(diǎn),過橢圓中心任作一條直線與橢圓交于兩點(diǎn),當(dāng)四邊形面積最大時(shí),的值等于         .               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不過坐標(biāo)原點(diǎn)O的直線L與拋物線y2=2x相交于A、B兩點(diǎn),且OA⊥OB,OE⊥AB于E.
①求證:直線L過定點(diǎn);
②求點(diǎn)E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,一條準(zhǔn)線方程為x=4.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案