19.已知數(shù)列{an}的前n項和記為Sn,${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,則an=(  )
A.${(-\frac{1}{2})^n}$B.$-\frac{1}{2^n}$C.$-{(-\frac{1}{2})^n}$D.$-{(\frac{1}{2})^{n-1}}$

分析 ${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,n≥2時,an=Sn-Sn-1,化為:an=-$\frac{1}{2}{a}_{n-1}$.n=1時,a1=S1=$\frac{1}{3}({a}_{1}-1)$,解得a1.利用等比數(shù)列的通項公式即可得出.

解答 解:∵${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,
∴n≥2時,an=Sn-Sn-1=$\frac{1}{3}({a}_{n}-1)$-$\frac{1}{3}({a}_{n-1}-1)$,化為:an=-$\frac{1}{2}{a}_{n-1}$.
n=1時,a1=S1=$\frac{1}{3}({a}_{1}-1)$,解得a1=$-\frac{1}{2}$.
∴數(shù)列{an}是等比數(shù)列,首項與公比都為-$\frac{1}{2}$.
則an=$(-\frac{1}{2})^{n}$.
故選:A.

點評 本題考查了等比數(shù)列的定義通項公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)A、B分別是復(fù)數(shù)z1、z2,在復(fù)平面上對應(yīng)的兩點,O為原點,若|z1+z2|=|z1-z2|,則∠AOB的大小為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax3+x2(a∈R)在$x=-\frac{4}{3}$處取得極值
(1)確定a的值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正項數(shù)列{an}滿足a1=1,數(shù)列{bn}為等比數(shù)列,且an+1=bn•an,若${b_{11}}^2=2$,則a22=2${\;}^{\frac{21}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.命題:①半徑為2,圓心角的弧度數(shù)為$\frac{1}{2}$的扇形的周長為5;
②若α、β為第三象限角,且α>β,則cosα>cosβ;
③若直線的斜率是-cosθ,則其傾斜角的取值范圍是[$\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}$];
④當(dāng)x≠$\frac{kπ}{2}$(k∈Z))時,$\frac{sinx+tanx}{cosx+cotx}$的值恒正.其中正確的命題是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知M是關(guān)于x的不等式2x2+(3a-7)x+3+a-2a2<0解集,且M中的一個元素是0,求實數(shù)a的取值范圍,并用a表示出該不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個幾何體的正視圖、側(cè)視圖和俯視圖如圖所示,若這個幾何體的外接球的表面積為100π,則該幾何體的體積為( 。
A.$36\sqrt{3}$B.$\frac{98}{3}$C.$\frac{116}{3}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a3+a8=-3,那么S10等于(  )
A.-9B.-11C.-13D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l經(jīng)過點P(2,1),則
(1)若直線l與x軸、y軸的正半軸分別交于A、B兩點,且△OAB的面積為4,求直線l的方程;
(2)若直線l與原點距離為2,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案