8.在等差數(shù)列{an}中,a3+a8=-3,那么S10等于( 。
A.-9B.-11C.-13D.-15

分析 由等差數(shù)列的性質(zhì)可得:a1+a10=a3+a8=-3.再利用求和公式即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a1+a10=a3+a8=-3.
∴S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5×(-3)=-15.
故選:D.

點評 本題考查了等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{OA}$=(1,1,0),$\overrightarrow{OB}$=(4,1,0),$\overrightarrow{OC}$=(4,5,-1),則向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夾角的余弦值是$\frac{3\sqrt{26}}{26}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的前n項和記為Sn,${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,則an=( 。
A.${(-\frac{1}{2})^n}$B.$-\frac{1}{2^n}$C.$-{(-\frac{1}{2})^n}$D.$-{(\frac{1}{2})^{n-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知模為2的向量$\overrightarrow a$與單位向量$\overrightarrow b$的夾角為$\frac{2π}{3}$,則$(2\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.計算:${(4-\frac{5}{8})^{-\frac{1}{3}}}×{(-\frac{7}{6})^0}+{(\frac{1}{3})^{{{log}_3}^{\frac{1}{2}}}}+\frac{1}{2}$lg25+lg2=$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知長方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)求直線DB與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個三棱錐的三視圖如圖所示,則該幾何體的體積為(  )
A.1B.$\frac{4\sqrt{3}}{3}$C.$\frac{8\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x≥0\\{log_2}(-x),x<0\end{array}$,則f(f(-2))=( 。
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l1:2x-3y+1=0,直線l2過點(1,1)且與直線l1垂直.
(1)求直線l2的方程;
(2)求直線l2與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案