【題目】已知橢圓,四點(diǎn),,,中恰有三點(diǎn)在橢圓上,拋物線焦點(diǎn)到準(zhǔn)線的距離為.

1)求橢圓、拋物線的方程;

2)過橢圓右頂點(diǎn)Q的直線與拋物線交于點(diǎn)AB,射線、分別交橢圓于點(diǎn).

i)證明:為定值;

ii)求的面積的最小值.

【答案】1,;(2)(i)證明見解析,(ii.

【解析】

1)由橢圓的對(duì)稱性可得所給的四個(gè)點(diǎn)哪幾個(gè)在橢圓上,代入橢圓的方程可得的值,進(jìn)而求出橢圓的方程;

2)(i)由題意可得直線的斜率不為,設(shè)直線的方程與拋物線聯(lián)立求出兩根之和,及兩根之積可證得 為定值;

ii)設(shè)直線的斜率,設(shè)的直線方程與橢圓聯(lián)立求出的坐標(biāo),求出,的值,由(Ⅰ)可得,求出面積的表達(dá)式,由均值不等式求出面積的最小值.

1關(guān)于軸對(duì)稱,關(guān)于軸對(duì)稱,

上,

上,則,

不在上,上,

,

,;

2)(i)由(1)可得右頂點(diǎn),由題意可得直線的不為,設(shè),設(shè),

將直線與代入拋物線的方程,可得

;

所以 ,

所以為定值;

ii,所以設(shè)直線

將直線代入中得:

所以,即;

同理得,

所以,即;

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實(shí)驗(yàn)班的名學(xué)生期中考試的語文、數(shù)學(xué)成績(jī)都不低于分,其中語文成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間是:、、、、

1)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生語文成績(jī)的中位數(shù)和平均數(shù);(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;中位數(shù)精確到

2)若這名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:

分組區(qū)間

從數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生中隨機(jī)選取人,求選出的人中恰好有人數(shù)學(xué)成績(jī)?cè)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),

1)要求用其中一塊剪拼成一個(gè)三棱錐模型,另一塊剪拼成一個(gè)正三棱柱模型,使它們的全面積都與原三角形的面積相等,

①請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別用虛線標(biāo)示在圖1、圖2中,并作簡(jiǎn)要說明;

②試比較你剪拼的正三棱錐與正三棱柱的體積的大小

2)設(shè)正三角形鐵皮的邊長(zhǎng)為,將正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個(gè)無蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求的單調(diào)性和極值;

(Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情的控制需要根據(jù)大數(shù)據(jù)進(jìn)行分析,并有針對(duì)性的采取措施.下圖是甲、乙兩個(gè)省份從27日到213日一周內(nèi)的新增新冠肺炎確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對(duì),下列說法錯(cuò)誤的是(

A.27日到213日甲省的平均新增新冠肺炎確診人數(shù)低于乙省

B.27日到213日甲省的單日新增新冠肺炎確診人數(shù)最大值小于乙省

C.27日到213日乙省相對(duì)甲省的新增新冠甲省肺炎確診人數(shù)的波動(dòng)大

D.后四日(210日至13日)乙省每日新增新冠肺炎確診人數(shù)均比甲省多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),直線 為參數(shù), ),直線與曲線相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

2)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為,直線與曲線交于在,兩點(diǎn),記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別是,離心率為,左、右頂點(diǎn)分別為,.且垂直于軸的直線被橢圓截得的線段長(zhǎng)為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、、三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“地?cái)偨?jīng)濟(jì)”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào),某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),2,3,4,56),如表所示:

試銷單價(jià)x(元)

4

5

6

7

8

9

產(chǎn)品銷量y(件)

q

84

83

80

75

68

已知,

1)試求q,若變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程;

2)用表示用(1)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)=|lnx|,若函數(shù)gx)=fx)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(

A. (0,B. ,e)C. D. (0,

查看答案和解析>>

同步練習(xí)冊(cè)答案