【題目】已知拋物線y=x2-2x及直線x=0,x=a,y=0圍成的平面圖形的面積為,求a的值.
【答案】a=-1,或a=2.
【解析】【試題分析】先作出的圖像,根據(jù)圖像分析可知,要將分成三類討論圍成區(qū)域.當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), .三種情況分別求出的值,其中一個(gè)值舍去.
【試題解析】
作出y=x2-2x的圖象如圖.
(1)當(dāng)a<0時(shí),
S= (x2-2x)dx
=(x3-x2)|=-+a2
=,
∴(a+1)(a-2)2=0.
∵a<0,∴a=-1.
(2)當(dāng)a>0時(shí),0<a≤2,
S=-=(x2-2x)dx=-(x3-x2)=a2-a3=,
∴(a+11)(a-2)2=0.
∵a>0,
∴a=2.
即(a+1)(a-2)2=0.
∵a>0,∴a=2.
②當(dāng)a>2時(shí),
S=- (x2-2x)dx+ (x2-2x)dx
=-(x3-x2)|+(x3-x2)|
=-(-4)+(a3-a2-+4)
=+(a3-a2-+4)=.
∴a3-a2+=0
∴a>2不合題意.
綜上a=-1,或a=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B為曲線C:y= 上兩點(diǎn),A與B的橫坐標(biāo)之和為4.(12分)
(1)求直線AB的斜率;
(2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦與.當(dāng)直線斜率為0時(shí),.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如圖:
(Ⅰ)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;
(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(Ⅲ)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣ ﹣1,g(x)=x+2x , h(x)=x+lnx,零點(diǎn)分別為x1 , x2 , x3 , 則( )
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx﹣ )+b(ω>0),且函數(shù)圖象的對稱中心到對稱軸的最小距離為 ,當(dāng)x∈[0, ]時(shí),f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位長度得到函數(shù)g(x)圖象,若g(x)﹣3≤m≤g(x)+3在x∈[0, ]上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊是a,b,c,已知2b﹣c=2acosC.
(1)求A;
(2)若4(b+c)=3bc,a=2 ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直線上取一點(diǎn),過作以為焦點(diǎn)的橢圓,則當(dāng)最小時(shí),橢圓的標(biāo)準(zhǔn)方程為____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com