設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件
2x-y-6≤0
x-y+2≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則
5
a
+
1
b
的最小值為:
9
4
9
4
分析:先根據(jù)條件畫出可行域,設(shè)z=ax+by,再利用幾何意義求最值,將最大值轉(zhuǎn)化為y軸上的截距,只需求出直線z=ax+by,過(guò)可行域內(nèi)的點(diǎn)(4,6)時(shí)取得最大值,從而得到一個(gè)關(guān)于a,b的等式,最后利用基本不等式求最小值即可.
解答:解:不等式表示的平面區(qū)域陰影部分,
當(dāng)直線ax+by=z(a>0,b>0)過(guò)直線x-y+2=0與直線2x-y-6=0的交點(diǎn)(8,10)時(shí),
目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大40,
即8a+10b=40,即4a+5b=20,
5
a
+
1
b
=(
5
a
+
1
b
)
4a+5b
20
=
5
4
+(
5b
4a
+
a
5b
)≥
5
4
+1=
9
4

當(dāng)且僅當(dāng)
5b
4a
=
a
5b
時(shí)取等號(hào),
5
a
+
1
b
的最小值為
9
4

故答案為
9
4
點(diǎn)評(píng):本題綜合地考查了線性規(guī)劃問(wèn)題和由基本不等式求函數(shù)的最值問(wèn)題.要求能準(zhǔn)確地畫出不等式表示的平面區(qū)域,并且能夠求得目標(biāo)函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件
2x-y-6≤0
x-y+2≥0
,則目標(biāo)函數(shù)z=x+2y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件
2x-y-6≤0
x-y+2≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則
5
a
+
1
b
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂二模)設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足
2x-y-4≤0
x-y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值是4,則
1
a
+
1
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)第一象限內(nèi)的點(diǎn)(x,y)滿足約束條件 ,  若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為40,則的最小值為(      )  

A.      B.       C.1      D. 4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案