精英家教網 > 高中數學 > 題目詳情

【題目】在直三棱柱中,,D為線段AC的中點.

1)求證:

2)求直線與平面所成角的余弦值;

3)求二面角的余弦值.

【答案】1)見解析;(2;(3

【解析】

1)由直三棱柱的定義可得,再根據等腰三角形性質可得,再由線面垂直的判定可得平面,即可證明.

2)取線段的中點為,分別取作為,,,建立空間直角坐標系,寫出各個點的坐標,利用向量數量積運算求得平面BC1D的法向量,即可由線面夾角的求法求得直線與平面所成角的余弦值.

3)由平面BC1D的法向量和平面的法向量,即可利用法向量法求得二面角的余弦值.

1)證明:由直三棱柱,可得底面,

.

,D為線段的中點.

,,

平面,

.

2)取線段的中點為,分別取作為,,,建立空間直角坐標系,如下圖所示:

,

,,,

設平面BC1D的法向量為,

,代入可得,可得

.

∴直線與平面所成角的余弦值

||.

3,,.

設平面的法向量為,

,代入可得,,解得

.

.

由圖可知,二面角為銳二面角

∴二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)當時,求的最小值;

(Ⅱ)若有兩個零點,求參數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱中,平面側面,且,

(Ⅰ)求證:;

(Ⅱ)若直線與平面所成角的大小為,求銳二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求曲線處的切線方程;

(Ⅱ)求上的單調區(qū)間;

(Ⅲ)當時,證明:上存在最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩定點,點是平面內的動點,且,記的軌跡是

(1)求曲線的方程;

(2)過點引直線交曲線兩點,設,點關于軸的對稱點為,證明直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD為梯形,ABCD,∠DAB=90°,BDD1B1為矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.

(1)證明:CB1AD1

(2)求B1到平面ACD1的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線的方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓C的右焦點為F,過點F的直線l與橢圓交于AB兩點,直線nx=4與x軸相交于點E,點M在直線n上,且滿足BMx軸.

(1)當直線lx軸垂直時,求直線AM的方程;

(2)證明:直線AM經過線段EF的中點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求曲線處的切線方程;

(2)函數在區(qū)間上有零點,求的值;

(3)若不等式對任意正實數恒成立,求正整數的取值集合.

查看答案和解析>>

同步練習冊答案