在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)
到點(diǎn)
的距離為
,到
軸的距離為
,且
.
(1)求點(diǎn)的軌跡
的方程;
(2) 若直線斜率為1且過點(diǎn)
,其與軌跡
交于點(diǎn)
,求
的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的方程為,直線
的方程為
,點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,求過點(diǎn)
及拋物線與
軸兩個(gè)交點(diǎn)的圓的方程;
(3)已知,點(diǎn)
是拋物線的焦點(diǎn),
是拋物線上的動(dòng)點(diǎn),求
的最小值及此時(shí)點(diǎn)
的坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
長(zhǎng)方形中,
,
.以
的中點(diǎn)
為坐標(biāo)原點(diǎn),建立如圖所示的直角坐標(biāo)系.
(1) 求以、
為焦點(diǎn),且過
、
兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2) 過點(diǎn)的直線
交(1)中橢圓于
兩點(diǎn),是否存在直線
,使得以線段
為直徑的圓恰好過坐標(biāo)原點(diǎn)?若存在,求出直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,如圖,已知橢圓E:
的左、右頂點(diǎn)分別為
、
,上、下頂點(diǎn)分別為
、
.設(shè)直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關(guān)于直線
對(duì)稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓
的位置關(guān)系,并說明理由;
(3)若圓的面積為
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率
,且直線
是拋物線
的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線
,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的左、右焦點(diǎn)分別為
,離心率
,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線
上的不同兩點(diǎn),若
,求
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com