已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上有零點(diǎn),求的最大值.

(Ⅰ)增區(qū)間:,減區(qū)間:;(Ⅱ)2

解析試題分析:(Ⅰ)求導(dǎo)函數(shù),求的解集,再和定義域求交集,即得函數(shù)的遞增區(qū)間;求的解集,再和定義域求交集,即得函數(shù)的遞減區(qū)間;(Ⅱ)可先利用導(dǎo)數(shù)求其極值點(diǎn),然后判斷函數(shù)大致圖象,使得圖象與軸在內(nèi)有交點(diǎn),由(Ⅰ)可知函數(shù)的單調(diào)區(qū)間和極值點(diǎn),,且,可判斷零點(diǎn)在區(qū)間內(nèi),又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/3/q8j3r.png" style="vertical-align:middle;" />,當(dāng)若,則,不滿足條件,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/3/q8j3r.png" style="vertical-align:middle;" />,可從負(fù)整數(shù)中的最大值-1開始逐個檢驗(yàn),直到找到滿足條件的的值為止.
試題解析:(Ⅰ),,∴增區(qū)間: ,減區(qū)間:;
(Ⅱ)由(Ⅰ)知,
,故在定義域上存在唯一零點(diǎn),且.
,則,,此區(qū)間不存在零點(diǎn),舍去.
,時,,,
為增區(qū)間,此區(qū)間不存在零點(diǎn),舍去.
時,,,
為增區(qū)間,且,故.
綜上
考點(diǎn):1、導(dǎo)數(shù)在函數(shù)單調(diào)性上的應(yīng)用;2、函數(shù)的極值;3、函數(shù)的零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上的圖像與直線恒有兩個不同交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(其中常數(shù)).
(1)當(dāng)時,求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當(dāng)時,曲線上總存在相異兩點(diǎn)、,使得曲線
在點(diǎn)、處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若對任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中,
(Ⅰ)若的最小值為,試判斷函數(shù)的零點(diǎn)個數(shù),并說明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/8/14nxn2.png" style="vertical-align:middle;" />.求關(guān)于的不等式的解集;
(Ⅱ)當(dāng)時,為常數(shù),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若對任意的實(shí)數(shù),函數(shù)的圖象在處的切線斜率總相等,求的值;
(2)若,對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案