已知函數(shù)試討論的單調(diào)性.
當(dāng)時(shí)的減區(qū)間為,增區(qū)間為;當(dāng)時(shí),減函數(shù)為,增區(qū)間為和;當(dāng)時(shí);增區(qū)間為,無減區(qū)間;當(dāng)時(shí),的減區(qū)間為,增區(qū)間為和;當(dāng)時(shí),的減區(qū)間為,增區(qū)間為.
解析試題分析:若要討論的單調(diào)性,先求出函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8d/4/j4vbe2.png" style="vertical-align:middle;" />,接著求導(dǎo),這是一個(gè)含參的二次函數(shù)形式,討論函數(shù)的單調(diào)性,則分三種情況,當(dāng)時(shí)分三種情況討論.最后匯總一下分類討論的情況.
試題解析:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8d/4/j4vbe2.png" style="vertical-align:middle;" />
當(dāng)時(shí),的減區(qū)間為,增區(qū)間為;
當(dāng)時(shí),令得;
當(dāng)時(shí),的減區(qū)間為,增區(qū)間為;
當(dāng)時(shí),減函數(shù)為,增區(qū)間為和
當(dāng)時(shí),增區(qū)間為,無減區(qū)間;
當(dāng)時(shí),的減區(qū)間為,增區(qū)間為和;
當(dāng)時(shí),,的減區(qū)間為,增區(qū)間為.
綜上,當(dāng)時(shí)的減區(qū)間為,增區(qū)間為;
當(dāng)時(shí),減函數(shù)為,增區(qū)間為和;
當(dāng)時(shí);增區(qū)間為,無減區(qū)間;
當(dāng)時(shí),的減區(qū)間為,增區(qū)間為和;
當(dāng)時(shí),的減區(qū)間為,增區(qū)間為.
考點(diǎn):1.含參函數(shù)的求導(dǎo)判斷單調(diào)性;2.分類討論思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的最大值為0,其中。
(1)求的值;
(2)若對任意,有成立,求實(shí)數(shù)的最大值;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)閰^(qū)間.
(1)求函數(shù)的極大值與極小值;
(2)求函數(shù)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上有零點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中a為正實(shí)數(shù).
(l)若x=0是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若在上無最小值,且在上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線與曲線在交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=+3-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥+ax+1在x≥時(shí)恒成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. 注:是自然對數(shù)的底數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com