【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
【答案】(Ⅰ)見解析;
(Ⅱ)見解析;
(Ⅲ)見解析.
【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;
(Ⅱ)由幾何體的空間結(jié)構(gòu)特征首先證得線面垂直,然后利用面面垂直的判斷定理可得面面垂直;
(Ⅲ)由題意,利用平行四邊形的性質(zhì)和線面平行的判定定理即可找到滿足題意的點.
(Ⅰ)證明:因為平面,所以;
因為底面是菱形,所以;
因為,平面,
所以平面.
(Ⅱ)證明:因為底面是菱形且,所以為正三角形,所以,
因為,所以;
因為平面,平面,
所以;
因為
所以平面,
平面,所以平面平面.
(Ⅲ)存在點為中點時,滿足平面;理由如下:
分別取的中點,連接,
在三角形中,且;
在菱形中,為中點,所以且,所以且,即四邊形為平行四邊形,所以;
又平面,平面,所以平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)黃河濟(jì)南段8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示:依據(jù)濟(jì)南的地質(zhì)構(gòu)造,得到水位與災(zāi)害等級的頻率分布條形圖如圖(乙)所示.
(I)以此頻率作為概率,試估計黃河濟(jì)南段在8月份發(fā)生I級災(zāi)害的概率;
(Ⅱ)黃河濟(jì)南段某企業(yè),在3月份,若沒受1、2級災(zāi)害影響,利潤為500萬元;若受1級災(zāi)害影響,則虧損100萬元;若受2級災(zāi)害影響則虧損1000萬元.
現(xiàn)此企業(yè)有如下三種應(yīng)對方案:
試問,如僅從利潤考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與圓:交于兩點.
(1)求線段的垂直平分線的方程;
(2)若,求的值;
(3)在(2)的條件下,求過點的圓的切線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列判斷正確的是( )
A.為奇函數(shù)
B.對任意,,則有
C.對任意,則有
D.若函數(shù)有兩個不同的零點,則實數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解關(guān)于x的不等式;
(2)對任意的(﹣1,2),恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對本班人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表,已知在全部人中隨機(jī)抽取人抽到喜歡數(shù)學(xué)的學(xué)生的概率為.
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)請將上面的列聯(lián)表補(bǔ)充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過的前提下認(rèn)為喜歡數(shù)學(xué)與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取人進(jìn)一步調(diào)查,設(shè)其中喜歡數(shù)學(xué)的女生人數(shù)為,求的分布列與期望.
下面的臨界表供參考:
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、、、 為平面直角坐標(biāo)系中兩兩不同的點。若,,且,則稱點、調(diào)和分割點、。已知平面上點、調(diào)和分割點 、.則下面說法正確的是()。
A. 可能是線段的中點
B. 可能是線段 的中點
C. 點、 可能同時在線段上
D. 點 、不可能同時在線段的延長線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一條直線與一個平面垂直,則稱此直線與平面構(gòu)成一個“正交線面對”.那么在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構(gòu)成的“正交線面對”的個數(shù)是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古代以六十年為一個甲子用十天干和十二地支相配六十年輪一遍,周而復(fù)始。甲子為干支之一,順序為第一個前一位是癸亥,后一位是乙丑論陰陽五行,天干之甲屬陽之木,地支之子屬陽之水,是水生木相生,十干與十二支按順序兩兩相配,從甲子到癸亥,共六十個組合,稱六十甲子.
問題
(1)2020年是己亥年,至少多少年后又是己亥年?
(2)從一個已亥年到下一個己亥年,周期是多少?
(3)計算i,,,,…,一直計算下去,你會得到什么結(jié)論?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com