【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿足 , = = =﹣2,動(dòng)點(diǎn)P,M滿足 =1, = ,則| |2的最大值是(
A.
B.
C.
D.

【答案】B
【解析】解:由 ,可得D為△ABC的外心,
= = ,可得
)=0, )=0,
= =0,
即有 ,可得D為△ABC的垂心,
則D為△ABC的中心,即△ABC為正三角形.
=﹣2,即有| || |cos120°=﹣2,
解得| |=2,△ABC的邊長(zhǎng)為4cos30°=2
以A為坐標(biāo)原點(diǎn),AD所在直線為x軸建立直角坐標(biāo)系xOy,
可得B(3,﹣ ),C(3, ),D(2,0),
=1,可設(shè)P(cosθ,sinθ),(0≤θ<2π),
= ,可得M為PC的中點(diǎn),即有M( , ),
則| |2=(3﹣ 2+( + 2
= + =
= ,
當(dāng)sin(θ﹣ )=1,即θ= 時(shí),取得最大值,且為
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求b,c的值;

(Ⅱ)試比較m∈R)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在實(shí)數(shù)集R上定義一種運(yùn)算“*”,對(duì)于任意給定的a、b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
1)對(duì)任意a、b∈R,a*b=b*a;
2)對(duì)任意a、b∈R,a*0=a;
3)對(duì)任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.
關(guān)于函數(shù)f(x)=x* 的性質(zhì),有如下說法:
①在(0,+∞)上函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣1),(1,+∞).
其中所有正確說法的個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.統(tǒng)計(jì)情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

女同學(xué)

總計(jì)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過多次測(cè)試發(fā)現(xiàn):女生甲解答一道幾何題所用的時(shí)間在分鐘,女生乙解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙兩人獨(dú)立解答同一道幾何題,求乙比甲先解答完的概率;

(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個(gè)命題:

①函數(shù)y=sin4x-cos4x的最小正周期是;

②終邊在y軸上的角的集合是{α|α=;

③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);

④把函數(shù)

⑤函數(shù)。

其中真命題的序號(hào)是__________(寫出所有真命題的編號(hào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體中,,,點(diǎn)的中點(diǎn).

(1)求證:直線∥平面;

(2)求證:平面 平面;

(3)求證:直線 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2018年種植的一批試驗(yàn)紫甘薯在不同溫度時(shí)6組死亡的株數(shù):

溫度(單位:℃)

21

23

24

27

29

32

死亡數(shù)(單位:株)

6

11

20

27

57

77

經(jīng)計(jì)算:,,.

其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù),

(1)是否有較強(qiáng)的線性相關(guān)性? 請(qǐng)計(jì)算相關(guān)系數(shù)(精確到)說明.

(2)并求關(guān)于的回歸方程(都精確到);

(3)用(2)中的線性回歸模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對(duì)于一組數(shù)據(jù),,……,,

線性相關(guān)系數(shù)通常情況下當(dāng)大于0.8時(shí),認(rèn)為兩

個(gè)變量有很強(qiáng)的線性相關(guān)性

其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,在底面的射影為的中點(diǎn),的中點(diǎn).

1)證明:平面

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點(diǎn)E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點(diǎn)M,那么M一定在直線________上.

查看答案和解析>>

同步練習(xí)冊(cè)答案