證明:若函數(shù)y=f(x)(xÎR)的圖像關(guān)于x=a對(duì)稱.且關(guān)于x=b對(duì)稱,則f(x)是周期函數(shù).且2(b-a)是它的一個(gè)周期.

答案:略
解析:

證明:設(shè)x是任意一個(gè)實(shí)數(shù),因?yàn)楹瘮?shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱,故f(ax)=f(ax),同理,f(bx)=f(bx)

于是f[x2(ba)]=f[b(bx2a)]=f[b(bx2a)]=f(2ax)=f[a(ax)]=f[a(ax)]=f(x)

所以,f(x)是周期函數(shù),且2(ba)是它的一個(gè)周期.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間并比較f(x)與f(1)的大小關(guān)系;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)若n≥2,n∈N+,試猜想
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•崇明縣一模)已知函數(shù)f(x)=
x2+ax+1
(a∈R).
(1)用定義證明:當(dāng)a=3時(shí),函數(shù)y=f(x)在[1,+∞)上是增函數(shù);
(2)若函數(shù)y=f(x)在[1,2]上有最小值-1,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:047

證明:若函數(shù)y=f(x)(xÎR)的圖像關(guān)于x=a對(duì)稱.且關(guān)于x=b對(duì)稱,則f(x)是周期函數(shù).且2(ba)是它的一個(gè)周期.

查看答案和解析>>

同步練習(xí)冊(cè)答案