設(shè)數(shù)學(xué)公式,定義f1(x)=f(x),f2(x)=f1(f(x)),f3(x)=f2(f(x)),…,fn(x)=fn-1(f(x)),(n≥2,n∈N)則f100(x)=1的解為x=________.

-
分析:觀察所給的前四項(xiàng)的結(jié)構(gòu)特點(diǎn),先觀察分子,只有一項(xiàng)組成,并且沒(méi)有變化,在觀察分母,有兩部分組成,是一個(gè)一次函數(shù),根據(jù)一次函數(shù)的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)的變化特點(diǎn),得到fn(x)=f(fn-1(x))=;從而得出結(jié)果.
解答:∵函數(shù)f(x)=觀察:
f1(x)=f(x)=,
f2(x)=f1(f(x))=
f3(x)=f2(f(x))=
f4(x)=f3(f(x))=
所給的函數(shù)式的分子不變都是x,
而分母是由兩部分的和組成,
第一部分的系數(shù)分別是x,2x,3x,4x…nx,
第二部分的數(shù)1
∴fn(x)=fn-1(f(x))=
∴f100(x)==1;
∴x=-
故答案為:-
點(diǎn)評(píng):本題考查歸納推理,實(shí)際上本題考查的重點(diǎn)是給出一個(gè)數(shù)列的前幾項(xiàng)寫出數(shù)列的通項(xiàng)公式,本題是一個(gè)綜合題目,知識(shí)點(diǎn)結(jié)合的比較巧妙.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域和值域均為[0,1]的函數(shù)f(x),定義f1(x)=f(x),f2(x)=f(f1(x)),…,n=1,2,3,….滿足fn(x)=x的點(diǎn)稱為f的n階周期點(diǎn).設(shè)f(x)=
2x,0≤x≤
1
2
2-2x,
1
2
<x≤1
 則f的2階周期點(diǎn)的個(gè)數(shù)是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化二模)對(duì)于定義域和值域均為[0,1]的函數(shù)f(x),定義f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=1,2,3,…滿足fn(x)=x的點(diǎn)稱為f的n階周期點(diǎn).設(shè)f(x)=
  2x     (0≤x≤
1
2
)
2-2x  (
1
2
<x≤1)
,則(1)方程f(x)=x的正根是
2
3
2
3
;(2)f的2階周期點(diǎn)的個(gè)數(shù)是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
xx+1
,定義f1(x)=f(x),f2(x)=f1(f(x)),f3(x)=f2(f(x)),…,fn(x)=fn-1(f(x)),(n≥2,n∈N)則f100(x)=1的解為x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域和值域均為[0,1]的函數(shù)f(x),定義f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n=1,2,3,….滿足fn(x)=x的點(diǎn)x∈[0,1]稱為f的n階周期點(diǎn).設(shè)f(x)=
2x,0≤x≤
1
2
2-2x,
1
2
<x≤1
,則f的3階周期點(diǎn)的個(gè)數(shù)是( 。
A、4B、6C、8D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案