已知橢圓,左、右兩個焦點分別為,上頂點為正三角形且周長為6,直線與橢圓相交于兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
(1);(2).

試題分析:(1)結(jié)合橢圓的幾何性質(zhì)與正三角形的周長為6,易得,再由,可計算得到,最后寫出橢圓的方程即可;(2)先設(shè),聯(lián)立直線與橢圓的方程,消去得到,從而得到及由二次方程的判別式求出,然后化簡,最后由求出的取值范圍即可.
試題解析:(1)依題意得因為為正三角形且周長為6
由圖形可得                      2分
故橢圓的方程為                       4分
(2)由            6分
,可得
設(shè)
                 8分

                      10分
因為,所以

的取值范圍是                 12分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點,c是橢圓的半焦距,.
(1)求m的值;
(2)O為坐標(biāo)原點,若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點分別為A,B,動點,直線與直線分別交于M,N兩點,求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點,曲線C是使為定值的點的軌跡,曲線過點.
(1)求曲線的方程;
(2)直線過點,且與曲線交于,當(dāng)的面積取得最大值時,求直線的方程;
(3)設(shè)點是曲線上除長軸端點外的任一點,連接,設(shè)的角平分線交曲線的長軸于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,左右焦點分別為,且.
(1)求橢圓C的方程;
(2)過點的直線與橢圓相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:,定點M(0,5),直線軸交于點F,O為原點,若以O(shè)M為直徑的圓恰好過與拋物線C的交點.
(1)求拋物線C的方程;
(2)過點M作直線交拋物線C于A,B兩點,連AF,BF延長交拋物線分別于,求證: 拋物線C分別過兩點的切線的交點Q在一條定直線上運動.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直角坐標(biāo)系xOy中,點P到拋物線C:y2=2px(p>0)的準(zhǔn)線的距離為.點M(t,1)是C上的定點,A,B是C上的兩動點,且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的兩個焦點F1,F2和上下兩個頂點B1B2是一個邊長為2且∠F1B1F2為60°的菱形的四個頂點.
(1)求橢圓C的方程;
(2)過右焦點F2的斜率為k(k≠0)的直線l與橢圓C相交于EF兩點,A為橢圓的右頂點,直線AE,AF分別交直線x=3于點M,N,線段MN的中點為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一個動點到兩個定點的距離之差的絕對值等于8,則動點M的軌跡方程為 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點是雙曲線右支上一點,是雙曲線的左焦點,且雙曲線的一條漸近線恰是線段的中垂線,則該雙曲線的離心率是(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案