【題目】隨著我國(guó)經(jīng)濟(jì)的高速發(fā)展,汽車(chē)的銷(xiāo)量也快速增加,每年因道路交通安全事故造成傷亡人數(shù)超過(guò)萬(wàn)人,根據(jù)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局發(fā)布的《車(chē)輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》(-醉駕車(chē)的測(cè)試)的規(guī)定:飲酒駕車(chē)是指車(chē)輛駕駛?cè)藛T血液中的酒精含量大于或者等于,小于的駕駛行為;醉酒駕車(chē)是指車(chē)輛駕駛?cè)藛T血液中的酒精含量大于或者等于的駕駛行為,某市交通部門(mén)從年飲酒后駕駛機(jī)動(dòng)車(chē)輛發(fā)生交通事故的駕駛員中隨機(jī)抽查了人進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
酒精含量 | |||||
發(fā)生交通事故的人數(shù) |
已知從這人中任意抽取兩人,兩人均是醉酒駕車(chē)的概率是.
(1)求,的值;
(2)實(shí)踐證明,駕駛?cè)藛T血液中的酒精含量與發(fā)生交通事故的人數(shù)具有線(xiàn)性相關(guān)性,試建立關(guān)于的線(xiàn)性回歸方程;
(3)試預(yù)測(cè),駕駛?cè)藛T血液中的酒精含量為多少時(shí),發(fā)生交通事故的人數(shù)會(huì)超過(guò)取樣人數(shù)的?
參考數(shù)據(jù):,
回歸直線(xiàn)方程中系數(shù)計(jì)算公式,.
【答案】(1)26 ; (2); (3)駕駛?cè)藛T血液中的酒精含量大于時(shí),發(fā)生交通事故的人數(shù)會(huì)超過(guò)取樣的..
【解析】
(1)用組合數(shù)公式分別求出中取人抽取的方法個(gè)數(shù),求出兩人均是醉酒駕車(chē)的概率,得到關(guān)于的方程,求解得出的值,再由,求出值;
(2)由已知求出,,將已知公式化為,已知數(shù)據(jù)代入,求出,再代入,即可求出線(xiàn)性回歸方程;
(3)解不等式,求出的范圍,即為所求.
(1)記“兩人均是醉酒駕車(chē)”為事件,
則,
整理得,解得,或(舍去)
又,∴
(2)由題知:,,
將,代入得,
所以線(xiàn)性回歸方程為
(3)由解得,
故駕駛?cè)藛T血液中的酒精含量大于時(shí),
發(fā)生交通事故的人數(shù)會(huì)超過(guò)取樣的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10天,每天新增疑似病例不超過(guò)7人”,根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是( )
A. 甲地:總體均值為3,中位數(shù)為4
B. 乙地:總體均值為1,總體方差大于0
C. 丙地:總體均值為2,總體方差為3
D. 丁地:中位數(shù)為2,眾數(shù)為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教育局衛(wèi)生健康所對(duì)全市高三年級(jí)的學(xué)生身高進(jìn)行抽樣調(diào)查,隨機(jī)抽取了100名學(xué)生,他們身高都處于五個(gè)層次,根據(jù)抽樣結(jié)果得到如下統(tǒng)計(jì)圖表,則從圖表中不能得出的信息是( )
A. 樣本中男生人數(shù)少于女生人數(shù)
B. 樣本中層次身高人數(shù)最多
C. 樣本中層次身高的男生多于女生
D. 樣本中層次身高的女生有3人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直, ,,點(diǎn)在線(xiàn)段上.
(Ⅰ) 若點(diǎn)為的中點(diǎn),求證:平面;
(Ⅱ) 求證:平面平面;
(Ⅲ) 當(dāng)平面與平面所成二面角的余弦值為時(shí),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,直線(xiàn)不經(jīng)過(guò)橢圓上頂點(diǎn),與橢圓交于,不同兩點(diǎn).
(1)當(dāng),時(shí),求橢圓的離心率的取值范圍;
(2)若,直線(xiàn)與的斜率之和為,證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生會(huì)為了解高二年級(jí)600名學(xué)生課余時(shí)間參加中華傳統(tǒng)文化活動(dòng)的情況(每名學(xué)生最多參加7場(chǎng)).隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:
則以下四個(gè)結(jié)論中正確的是( )
A.表中的數(shù)值為10
B.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場(chǎng)數(shù)不高于2場(chǎng)的學(xué)生約為108人
C.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場(chǎng)數(shù)不低于4場(chǎng)的學(xué)生約為216人
D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知位于軸左側(cè)的圓與軸相切于點(diǎn)且被軸分成的兩段圓弧長(zhǎng)之比為,直線(xiàn)與圓相交于,兩點(diǎn),且以為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn).
(1)求圓的方程;
(2)求直線(xiàn)的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線(xiàn)與的交點(diǎn)為,四邊形為梯形,,.
(1)若,求證:平面;
(2)求證:平面平面;
(3)若,求與平面所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com