【題目】函數(shù)f(x)=xex .
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.
【答案】
(1)解:f′(x)=ex(x+1),
令f′(x)>0,解得:x>﹣1,
令f′(x)<0,解得:x<﹣1,
∴f(x)在(﹣∞,﹣1)遞減,在(﹣1,+∞)遞增,
∴f(x)在極小值是f(﹣1)=﹣ ,無極大值
(2)解:x>0時,k≥ ,
令φ(x)= ,則φ′(x)= <0,
φ(x)在(0,+∞)遞減,
故φ(x)≤φ(0)=1,即k≥1;
﹣1≤x<0時,k≤ ,
φ′(x)= <0,
故φ(x)在[﹣1,0]遞減,φ(x)≥φ(0)=1,
故k≤1,
綜上,k=1,
故k∈{1}
【解析】(1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的最小值即可;(2)分離參數(shù),令φ(x)= ,根據(jù)函數(shù)的單調(diào)性求出k的值即可.
科目:高中數(shù)學 來源: 題型:
【題目】某村投資128萬元建起了一處生態(tài)采摘園,預計在經(jīng)營過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設(shè)y表示前n(n∈N*)年的純利潤總和(利潤總和=經(jīng)營總收入﹣經(jīng)營總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+ x2在x=﹣1處取得極大值,記g(x)= .程序框圖如圖所示,若輸出的結(jié)果S> ,則判斷框中可以填入的關(guān)于n的判斷條件是( )
A.n≤2014?
B.n≤2015?
C.n>2014?
D.n>2015?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為豐富中學生的課余生活,增進中學生之間的交往與學習,某市甲乙兩所中學舉辦一次中學生圍棋擂臺賽.比賽規(guī)則如下,雙方各出3名隊員并預先排定好出場順序,雙方的第一號選手首先對壘,雙方的勝者留下進行下一局比賽,負者被淘汰出局,由第二號選手挑戰(zhàn)上一局獲勝的選手,依此類推,直到一方的隊員全部被淘汰,另一方算獲勝.假若雙方隊員的實力旗鼓相當(即取勝對手的概率彼此相等) (Ⅰ)在已知乙隊先勝一局的情況下,求甲隊獲勝的概率.
(Ⅱ)記雙方結(jié)束比賽的局數(shù)為ξ,求ξ的分布列并求其數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為D,若對于a,b,c∈D,f(a),f(b),f(c)分別為某個三角形的三邊長,則稱f(x)為“三角形函數(shù)”.給出下列四個函數(shù): ①f(x)=lg(x+1)(x>0);
②f(x)=4﹣cosx;
③ ;
④
其中為“三角形函數(shù)”的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點在坐標原點,焦點F在x軸的正半軸上,過點F的直線l與拋物線C相交于A、B兩點,且滿足 .
(1)求拋物線C的標準方程;
(2)若點M在拋物線C的準線上運動,其縱坐標的取值范圍是[﹣1,1],且 ,點N是以線段AB為直徑的圓與拋物線C的準線的一個公共點,求點N的縱坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q﹣BP﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有1 000根某品種的棉花纖維,從中隨機抽取50根,纖維長度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)見右上表,據(jù)此估計這1 000根中纖維長度不小于37.5 mm的根數(shù)是 .
纖維長度 | 頻數(shù) |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com