已知實(shí)數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3-x2+ax.
(Ⅰ) 當(dāng)a=2時,求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點(diǎn)與f (x)的極小值點(diǎn)相同.
求證:g(x)的極大值小于等于.
本題主要考查函數(shù)的極值概念、導(dǎo)數(shù)運(yùn)算法則、導(dǎo)數(shù)應(yīng)用,同時考查推理論證能力,分類討論等綜合解題能力和創(chuàng)新意識。滿分14分。
(Ⅰ) 解: 當(dāng)a=2時,f ′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x | (-,1) | 1 | (1,2) | 2 | (2,+) |
f ′(x) | + | 0 | - | 0 | + |
f (x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
所以,f (x)極小值為f (2)=. …………………………………5分
(Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a).
g ′(x)=3x2+2bx-(2b+4)+=.
令p(x)=3x2+(2b+3)x-1,
(1) 當(dāng) 1<a≤2時,
f (x)的極小值點(diǎn)x=a,則g(x)的極小值點(diǎn)也為x=a,
所以p(a)=0,
即3a2+(2b+3)a-1=0,
即b=,
此時g(x)極大值=g(1)=1+b-(2b+4)=-3-b
=-3+ =.
由于1<a≤2,
故 ≤2--=.………………………………10分
(2) 當(dāng)0<a<1時,
f (x)的極小值點(diǎn)x=1,則g(x)的極小值點(diǎn)為x=1,
由于p(x)=0有一正一負(fù)兩實(shí)根,不妨設(shè)x2<0<x1,
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-.
此時g(x)的極大值點(diǎn)x=x1,
有 g(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1 (x12-2x1<0)
<-(x12-2x1)-4x1+1
=-x12+x1+1
=-(x1-)2+1+ (0<x1<1)
≤
<.
綜上所述,g(x)的極大值小于等于. ……………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
a+1 |
2 |
5 |
4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com