【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.曲線的極坐標方程為,曲線的參數(shù)方程為為參數(shù))

(1)求曲線的直角坐標方程及曲線的極坐標方程;

(2)當)時在曲線上對應的點為,若的面積為,求點的極坐標,并判斷是否在曲線上(其中點為半圓的圓心)

【答案】(1)曲線的普通方程為,曲線的極坐標方程為,( );(2)見解析.

【解析】試題分析:1曲線的極坐標方程為兩邊同乘以,利用 即可得曲線的直角坐標方程,利用代入法將曲線的參數(shù)方程消去參數(shù)可得普通方程,再化成極坐標方程可即可;2的極坐標為,利用的面積為,可求出點的極坐標,代入曲線的極坐標方程檢驗是否成立即可.

試題解析(1)曲線的普通方程為,

曲線的極坐標方程為: ,( ),

(2)設的極坐標為,(

,

所以點的極坐標為,符合方程

所以點在曲線上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)已知函數(shù)的最小值為,若實數(shù),求

最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)求曲線在點處的切線的斜率

(Ⅱ)判斷方程的導數(shù)在區(qū)間內的根的個數(shù),說明理由;

(Ⅲ)若函數(shù)在區(qū)間內有且只有一個極值點的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調增函數(shù)

①求最大整數(shù)值;

②證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 、分別為的中點, , .

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,橢圓的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求經過橢圓右焦點且與直線垂直的直線的極坐標方程;

(2)若為橢圓上任意-點,當點到直線距離最小時,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

時,求函數(shù)的單調區(qū)間;

對任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知兩個正方形ABCDDCEF不在同一平面內,M,N分別為AB,DF的中點.

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點,FB1C1的中點.

(1)求證:A1F∥平面ECC1;

(2)在CD上是否存在一點G,使BG⊥平面ECC1?若存在,請確定點G的位置,并證明你的結論,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案