在等差數(shù)列{an}中,a1=1,公差d≠0且a3,a4,a6依次是一個等比數(shù)列的前三項,則這個等比數(shù)列的第四項是
 
考點:等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:設(shè)出等差數(shù)列的公差,由a3、a4、a6是一個等比數(shù)列的前三項列式求出公差,得到等比數(shù)列的前三項,則第四項可求.
解答: 解:設(shè)等差數(shù)列{an}的公差為d(d≠0),
由a3、a4、a6是一個等比數(shù)列的前三項,得:a42=a3a6
又a1=1,
得(1+3d)2=(1+2d)(1+5d),解得:d=-1.
∴等比數(shù)列的前三項分別為:-1,-2,-4.
則該等比數(shù)列的第四項為-8.
故答案為:-8
點評:本題考查了等差數(shù)列的通項公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

tan(α+β)=
2
3
,tan(α-
π
5
)=4
,則tan(β+
π
5
)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
1+x2
x

(1)判斷函數(shù)的奇偶性;
(2)計算f(
1
3
)+f(
1
2
)+f(1)-f(2)-f(3)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)為最小正周期是6的周期函數(shù),當-3≤x<-1時,f(x)=-(x+2)2;當-1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系O-xyz中,點(-2,0,4)關(guān)于y軸的對稱點是( 。
A、(-2,0,-4)
B、(2,0,-4)
C、(4,0,-2)
D、(2,0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=cos2x+acosx+
5
8
a-
3
2
的最小值(0≤x≤
π
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某等差數(shù)列共有10項,其奇數(shù)項之和為10,偶數(shù)項之和為30,則公差為( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,cosx>0”的否定是( 。
A、?x∈R,cosx≤0
B、?x∈R,cosx≤0
C、?x∈R,cosx>0
D、?x∈R,cosx<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

交流電的電壓E(單位:伏)與時間t(單位:秒)的關(guān)系可用e=220
3
sin(100πt+
π
6
)來表示.求:
(1)開始時的電壓;
(2)電壓值重復出現(xiàn)一次的時間間隔;
(3)電壓的最大值和第一次獲得最大值的時間.

查看答案和解析>>

同步練習冊答案