已知奇函數(shù)f(x)=
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.


解:(1)當(dāng)x<0時(shí),-x>0,f(x)=-(x)2+2(-x)=-x2-2x,
又f(x)為奇函數(shù),f(x)=-f(-x)=x2+2x,
所以m=2.                                      …………………3分
f(x)的圖象略.                                      …………………6分
(2)由(1)知f(x)=,
由圖象可知,f(x)在[-1,1]上單調(diào)遞增,               …………………8分
要使f(x)在[-1,a-2]上單調(diào)遞增,只需        …………………10分
解之                    …………………12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
某公司生產(chǎn)一種電了儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):
  ,其中是儀器的月產(chǎn)量。
⑴將利潤表示為月產(chǎn)量的函數(shù)。
⑵當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少元?(總收益―總成本=利潤)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(12分)飛機(jī)每飛行1小時(shí)的費(fèi)用由兩部分組成,固定部分為4900元,變動部分(元)與飛機(jī)飛行速度(千米∕小時(shí))的函數(shù)關(guān)系式是,已知甲乙兩地的距離為(千米).
(1)試寫出飛機(jī)從甲地飛到乙地的總費(fèi)用(元)關(guān)于速度(千米∕小時(shí))的函數(shù)關(guān)系式;
(2)當(dāng)飛機(jī)飛行速度為多少時(shí),所需費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,不等式的解集是,
(Ⅰ) 求的解析式;
(Ⅱ) 若對于任意,不等式恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地有三家工廠,分別位于矩形ABCD 的頂點(diǎn)A,B 及CD的中點(diǎn)P 處,已知AB="20km,CB" ="10km" ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域中(含邊界),且與A,B等距離的一點(diǎn)O 處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP ,設(shè)排污管道的總長為km.
(Ⅰ)設(shè)∠BAO=(rad),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請用(Ⅰ)中的函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排污管道總長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求的取值范圍;
(3)若,證明對任意,不等式都成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)寫出函數(shù)圖像的頂點(diǎn)坐標(biāo)及其單調(diào)遞增遞減區(qū)間.
(2)若函數(shù)的定義域和值域是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為元一本,經(jīng)銷過程中每本書需付給代理商的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書投放市場后定價(jià)為元一本,,預(yù)計(jì)一年的銷售量為萬本.
(Ⅰ)求該出版社一年的利潤(萬元)與每本書的定價(jià)的函數(shù)關(guān)系式;
(Ⅱ)若時(shí),當(dāng)每本書的定價(jià)為多少元時(shí),該出版社一年利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)滿足條件,及.
(1)求的解析式;
(2)求上的最值.

查看答案和解析>>

同步練習(xí)冊答案