12.已知變量x、y滿足約束條件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$.
(1)畫出可行域(過程不要求);
(2)求可行域的面積.

分析 (1)直接由約束條件作出可行域;
(2)聯(lián)立方程組求出A,C的坐標(biāo),得到AC的長度,代入三角形面積公式得答案.

解答 解:(1)由約束條件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$作出可行域如圖:
(2)聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x-y=1}\end{array}\right.$,解得A(-1,-2),
聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x+y=1}\end{array}\right.$,解得C(-1,2),
∴可行域面積$S=\frac{1}{2}×4×2=4$.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)焦點在x軸上,且經(jīng)過點(2,0)和點(0,1);
(2)焦點在y軸上,與y軸的一個交點為P(0,-10),P到它較近的一個焦點的距離等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)$f(x)=sin(x+\frac{π}{3});a=f(\frac{π}{12}),b=f(\frac{π}{6}),c=f(\frac{π}{3})$,則( 。
A.a>b>cB.c>a>bC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且向量$\overrightarrow m$=(cos2B-1,2sinA)與向量$\overrightarrow n$=($\sqrt{2}$sinC,-1)平行.
(1)若a=$\sqrt{2}$,b=1,求c;
(2)若$\frac{c}{a}$+$\frac{a}{c}$>4sin(A+C),求cosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面命題中假命題是( 。
A.?x∈R,3x>0
B.?α,β∈R,使sin(α+β)=sinα+sinβ
C.命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”
D.?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是冪函數(shù),且在(0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}的前n項和為Sn,Sn=2n+1-(n+1),等差數(shù)列{bn}的各項為正實數(shù),其前n項和為Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(I)求數(shù)列{an}、{bn}的通項公式;
(2)若cn=anbn,當(dāng)n≥2時,求數(shù)列{cn}的前n項和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式x2-2ax+a>0,對x∈R恒成立,則實數(shù)a取值范圍為( 。
A.{a|1<a<2}B.{a|-2<a<1}C.{a|0<a<2}D.{a|0<a<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a=x2+x+$\sqrt{2}$,b=lg3,$c={e^{-\frac{1}{2}}}$,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法的正確的是(  )
A.經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示
B.經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示
C.不經(jīng)過原點的直線都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示P1(x1,y1)、P2(x2,y2
D.經(jīng)過任意兩個不同的點的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示

查看答案和解析>>

同步練習(xí)冊答案