【題目】函數(shù)f(x)=sin(ωx+φ)(其中|φ|< )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
【答案】D
【解析】解:∵ = ,
∴T=π= (ω>0),
∴ω=2;
又 ×2+φ=π,
∴φ= .
∴f(x)=sin(2x+ ),
∴f(x﹣ )=sin[2(x﹣ )+ ]=sin2x,
∴為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點向右平移 個單位.
故選D.
【考點精析】關于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx( ).
(1)求函數(shù)f(x)在( )上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則 ”
⑶ 中, . 是斜邊 上的點, .以 為起點任作一條射線 交 于 點,則 點落在線段 上的概率是
⑷設隨機變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在區(qū)間[0,1]內(nèi)隨機取兩個數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實根的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD.中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點. (Ⅰ)求證;平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 ( )上的值域為[﹣1,2],則θ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l: (t為參數(shù)),曲線C1: (θ為參數(shù)). (Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的 倍,縱坐標壓縮為原來的 倍,得到曲線C2 , 設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】曲線C是平面內(nèi)與兩個定點F1(﹣2,0),F(xiàn)2(2,0)的距離之積等于9的點的軌跡.給出下列命題: ①曲線C過坐標原點;
②曲線C關于坐標軸對稱;
③若點P在曲線C上,則△F1PF2的周長有最小值10;
④若點P在曲線C上,則△F1PF2面積有最大值 .
其中正確命題的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com