【題目】下列說法:

①對于獨立性檢驗,的值越大,說明兩事件相關(guān)程度越大;

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是0.3;

③已知隨機變量,若,則)的值為

④通過回歸直線及回歸系數(shù),可以精確反映變量的取值和變化趨勢.

其中錯誤的選項是(

A.B.C.D.

【答案】AD

【解析】

根據(jù)正態(tài)分布,回歸分析,以及獨立性檢驗等知識,對選項進行逐一分析即可.

的觀測值不是刻畫兩個分類變量之間的關(guān)系,故錯誤;

,的值分別是0.3,故正確;

③已知隨機變量,故由對稱性可知,

)的值為,故正確;

④通過回歸直線及回歸系數(shù),只能大致的(不能精確)反映變量的取值和變化趨勢.故錯誤.

綜上所述,錯誤的是①④

故選:AD

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),.

1)當為自然對數(shù)的底數(shù))時,求的極小值;

2)討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,都是邊長為2的正三角形,平面平面,平面,.

1)求點到平面的距離;

2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三邊長為a,bc,有下列四個命題:

①以,為邊長的三角形一定存在;

②以,為邊長的三角形一定存在;

③以,為邊長的三角形一定存在;

④以,,為邊長的三角形一定存在.

其中正確的是(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如城鎮(zhèn)小汽車的普及率為75%,即平均每100個家庭有75個家庭擁有小汽車,若從如城鎮(zhèn)中任意選出5個家庭,則下列結(jié)論成立的是( )

A.5個家庭均有小汽車的概率為

B.5個家庭中,恰有三個家庭擁有小汽車的概率為

C.5個家庭平均有3.75個家庭擁有小汽車

D.5個家庭中,四個家庭以上(含四個家庭)擁有小汽車的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,準線為,拋物線上存在一點,過點,垂足為,使是等邊三角形且面積為.

(1)求拋物線的方程;

(2)若點是圓與拋物線的一個交點,點,當取得最小值時,求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于簡單幾何體的說法中正確的是(

①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;

②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;

③有兩個底面平行且相似,其余各面都是梯形的多面體是棱臺;

④空間中到定點的距離等于定長的所有點的集合是球面.

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且函數(shù)圖像經(jīng)過點.

1)當時,求的單調(diào)區(qū)間;

2且函數(shù)在區(qū)間上有且只有個極值點時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

2)已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品.現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

查看答案和解析>>

同步練習冊答案