【題目】下面是關(guān)于復(fù)數(shù)z= 的四個命題:p1:|z|=2,p2:z2=2i,p3:z的共軛復(fù)數(shù)為1+i,p4:z的虛部為﹣1.
其中的真命題為

【答案】p2 , p4
【解析】解:解:∵復(fù)數(shù)z= = = =﹣1﹣i.
|Z|= ,∴p1:不正確;
∵Z2=(﹣1)2+i2+2i=2i,∴p2:z2=2i,正確;
=﹣1+i,∴p3:z的共軛復(fù)數(shù)為1+i,不正確;
∵Z=﹣1﹣i,∴虛部為﹣1.∴p4:z的虛部為﹣1正確.
所以答案是:p2 , p4
【考點精析】通過靈活運用命題的真假判斷與應(yīng)用和復(fù)數(shù)的乘法與除法,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;設(shè);即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a3x+1 , g(x)=( 5x2 , 其中a>0,且a≠1.
(1)若0<a<1,求滿足f(x)<1的x的取值范圍;
(2)求關(guān)于x的不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列中,已知對任意都成立,數(shù)列的前項和為.(這里均為實數(shù))

(1)若是等差數(shù)列,求的值;

(2)若,求;

(3)是否存在實數(shù),使數(shù)列是公比不為的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,x∈(﹣2,2)
(1)判斷f(x)的奇偶性并說明理由;
(2)求證:函數(shù)f(x)在(﹣2,2)上是增函數(shù);
(3)若f(2+a)+f(1﹣2a)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:
①f(x)=x3﹣3x2是增函數(shù),無極值.
②f(x)=x3﹣3x2在(﹣∞,2)上沒有最大值
③由曲線y=x,y=x2所圍成圖形的面積是
④函數(shù)f(x)=lnx+ax存在與直線2x﹣y=0平行的切線,則實數(shù)a的取值范圍是(﹣∞,2)
其中正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為實數(shù)集R,A={x|3≤x<7},B={x| ≤2x≤8},C={x|x<a}.
(1)求R(A∪B)
(2)如果A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=exax-1,其中e為自然對數(shù)的底數(shù),a∈R.

(1)若a=e,函數(shù)g (x)=(2-e)x

①求函數(shù)h(x)f (x)g (x)的單調(diào)區(qū)間;

②若函數(shù)的值域為R,求實數(shù)m的取值范圍;

(2)若存在實數(shù)x1,x2[0,2],使得f(x1)f(x2),且|x1x2|≥1

求證:e1ae2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組到社區(qū)了解參加健美操運動人員的情況,用分層抽樣的方法抽取了40人進行調(diào)查,按照年齡分成五個小組: ,并繪制成如圖所示的頻率分布直方圖.

(1)求該社區(qū)參加健美操運動人員的平均年齡;

(2)如果研究小組從該樣本中年齡在6人中隨機地抽取出2人進行深入采訪,求被采訪的2人,年齡恰好都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax , x∈[﹣1,2]的最大值與函數(shù)f(x)=x2﹣2x+3的最值相等,則a的值為(
A.
B. 或2
C. 或2
D.

查看答案和解析>>

同步練習(xí)冊答案