精英家教網 > 高中數學 > 題目詳情

【題目】如圖,直四棱柱的底面是菱形,,,,分別是,,的中點.

1)證明:平面;

2)求二面角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)過,證明,再證明,可得,再由線面平行的判定可得平面

2)以為坐標原點,以垂直于得直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得二面角的正弦值.

1)如圖,過,則,且,

,,四邊形為平行四邊形,則,

,中點,得中點,而中點,

,,則四邊形為平行四邊形,則,

平面,平面,

平面

2)以為坐標原點,以垂直于得直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系,

,,

,,

設平面的一個法向量為

,取,得

又平面MAA1的一個法向量為,

.

二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知焦點在x軸上的橢圓有一個內含圓x2y2=,該圓的垂直于x軸的切線交橢圓于點M,N,且 (O為原點).

1)求b的值;

2)設內含圓的任意切線l交橢圓于點A、B.求證:,并求|AB|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的個數是( )

①設某大學的女生體重與身高具有線性相關關系,根據一組樣本數據,用最小二乘法建立的線性回歸方程為 ,則若該大學某女生身高增加,則其體重約增加;

②關于的方程的兩根可分別作為橢圓和雙曲線的離心率;

③過定圓上一定點作圓的動弦為原點,若,則動點的軌跡為橢圓;

④已知是橢圓的左焦點,設動點在橢圓上,若直線的斜率大于,則直線為原點)的斜率的取值范圍是.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系內,已知點,圓的方程為,點是圓上任意一點,線段的垂直平分線和直線相交于點.

1)當點在圓上運動時,求點的軌跡方程;

2)過點能否作一條直線,與點的軌跡交于兩點,且點為線段的中點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求函數的極值.

2)是否存在實數,使得函數上的最小值為0?若存在,試求出的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點,是他們的一個公共點,且,則橢圓和雙曲線的離心率的倒數之和的最大值為___.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,討論函數的單調性;

2)若函數在區(qū)間上無零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為

(Ⅰ)求的極坐標方程;

(Ⅱ)設點的極坐標為,求面積的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了確定下一年度投入某種產品的宣傳費用,需了解年宣傳費(單位:萬元)對年銷量(單位:噸)和年利潤(單位:萬元)的影響對近6年宣傳費和年銷量的數據做了初步統(tǒng)計,得到如下數據:

年份

2013

2014

2015

2016

2017

2018

年宣傳費(萬元)

38

48

58

68

78

88

年銷售量(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經電腦模擬,發(fā)現年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式,兩邊取對數,即,令,即對上述數據作了初步處理,得到相關的值如下表:

75.3

24.6

18.3

101.4

1)從表中所給出的6年年銷售量數據中任選2年做年銷售量的調研,求所選數據中至多有一年年銷售量低于21噸的概率.

2)根據所給數據,求關于的回歸方程;

3)若生產該產品的固定成本為200(萬元),且每生產1(噸)產品的生產成本為20(萬元)(總成本=固定成本+生產成本+年宣傳費),銷售收入為(萬元),假定該產品產銷平衡(即生產的產品都能賣掉),2019年該公司計劃投入108萬元宣傳費,你認為該決策合理嗎?請說明理由.(其中為自然對數的底數,

附:對于一組數據,其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

同步練習冊答案