已知數(shù)列{an}的前n項(xiàng)和為Sn,且有a1=2,Sn=2an-2.
(1)求數(shù)列an的通項(xiàng)公式;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.

(1) an=2n        (2) Tn=2+(n-1)·2n+1

解析解:(1)∵Sn=2an-2,
∴Sn-1=2an-1-2(n≥2),
∴an=2an-1,
=2(n≥2).
又∵a1=2,
∴{an}是以2為首項(xiàng),2為公比的等比數(shù)列,
∴an=2·2n-1=2n.
(2)bn=n·2n,
Tn=1·21+2·22+3·23+…+n·2n,
2Tn=1·22+2·23+…+(n-1)·2n+n·2n+1.
兩式相減得,-Tn=21+22+…+2n-n·2n+1,
∴-Tn=-n·2n+1=(1-n)·2n+1-2,
∴Tn=2+(n-1)·2n+1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)曲線在點(diǎn)處的切線與軸的交點(diǎn)坐標(biāo)為
(1)求的表達(dá)式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求數(shù)列{anbn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=-an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n項(xiàng)和Un.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nxbn=0的兩根,且a1=1.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
(3)設(shè)函數(shù)f(n)=bnt·Sn(n∈N*),若f(n)>0對(duì)任意的n∈N*都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2a1=8,a3m.①當(dāng)m=48時(shí),求數(shù)列{an}的通項(xiàng)公式;②若數(shù)列{an}是唯一的,求m的值;
(2)若a2ka2k-1+…+ak+1-(akak-1+…+a1)=8,k∈N*,求a2k+1a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和滿足:為常數(shù),
(1)求的通項(xiàng)公式;
(2)設(shè),若數(shù)列為等比數(shù)列,求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案