在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2=2a1+3,且3a2,a4,5a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求數(shù)列{anbn}的前n項(xiàng)和Sn.

(1)3n,n∈N(2)Sn

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若正項(xiàng)數(shù)列滿足條件:存在正整數(shù),使得對(duì)一切都成立,則稱數(shù)列級(jí)等比數(shù)列.
(1)已知數(shù)列為2級(jí)等比數(shù)列,且前四項(xiàng)分別為,求的值;
(2)若為常數(shù)),且級(jí)等比數(shù)列,求所有可能值的集合,并求取最小正值時(shí)數(shù)列的前項(xiàng)和;
(3)證明:為等比數(shù)列的充要條件是既為級(jí)等比數(shù)列,也為級(jí)等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的通項(xiàng)公式為,等比數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)an=1+q+q2+…+qn-1(n∈N,q≠±1),An=C n1a1+C n2a2+…+Cnnan,求An(用n和q表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}中,a2=32,a8,an+1<an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且有a1=2,Sn=2an-2.
(1)求數(shù)列an的通項(xiàng)公式;
(2)若bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+1,數(shù)列{bn}是首項(xiàng)為1,公比為b的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)無(wú)窮等比數(shù)列的公比為q,且,表示不超過實(shí)數(shù)的最大整數(shù)(如),記,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.
(Ⅰ)若,求;
(Ⅱ)若對(duì)于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:)的充分必要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案