【題目】已知函數
(1)討論函數的單調性;
(2)若有兩個零點,求的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.
(1)求橢圓的標準方程;
(2)若直線與橢圓交于、兩點,線段的中點為,為坐標原點,且,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函數f(x)=f1(x)·f2(x)的極值;
(2)若函數g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(,e)內有兩個零點,求正實數a的取值范圍;
(3)求證:當x>0時,.(說明:e是自然對數的底數,e=2.71828…)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為(),直線的參數方程為(為參數).
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)己知點,直線與曲線交于,兩點,若,,成等比數列,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)設過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線C1的極坐標方程是,在以極點為原點O,極軸為x軸正半軸(兩坐標系取相同的單位長度)的直角坐標系xOy中,曲線C2的參數方程為(θ為參數).
(1)求曲線C1的直角坐標方程與曲線C2的普通方程;
(2)將曲線C2經過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動點,求|MN|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是拋物線的焦點,過點且與坐標軸不垂直的直線交拋物線于、兩點,交拋物線的準線于點,其中,.過點作軸的垂線交拋物線于點,直線交拋物線于點.
(1)求的值;
(2)求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,為兩個平面,命題:的充要條件是內有無數條直線與平行;命題:的充要條件是內任意一條直線與平行,則下列說法正確的是( )
A.“”為真命題B.“”為真命題
C.“”為真命題D.“”為真命題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com