以橢圓+=1的焦點為頂點,頂點為焦點的雙曲線方程是________________.
-=1
橢圓中,a2=8,b2=5,c2=8-5=3,
∴焦點F(±,0),頂點(±2,0).
∵雙曲線中,a12=3,c12=8,
∴b12=c12-a12=5.
故雙曲線方程為-=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的中心在原點,右頂點為A(1,0),點P、Q在雙曲線的右支上,點M(m,0)到直線AP的距離為1.
(1)若直線AP的斜率為k,且|k|∈[,],求實數(shù)m的取值范圍;
(2)當m=+1時,△APQ的內心恰好是點M,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

F1、F2是雙曲線-=1的兩個焦點,P在雙曲線上且滿足|PF1|·|PF2|=32,則∠F1PF2=__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線=1(a>0,b>0)的右焦點為F,右準線與一條漸近線交于點A,△OAF的面積為(O為原點),則兩條漸近線的夾角為(    )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過雙曲線-=1(a>0,b>0)的左焦點且垂直于x軸的直線與雙曲線交于M、N兩點,以MN為直徑的圓恰好過雙曲線的右頂點,則雙曲線的離心率等于___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點P(3,4)且與雙曲線-=1只有一個公共點的直線共有______________條.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線y=kx+1與雙曲線x2-2y2=1有且僅有一個公共點,則實數(shù)k的值有(    )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線mx2+y2=1的虛軸長是實軸長的2倍,則m等于(  )
A.B.-4C.4D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1(-4,0)、F2(4,0),曲線上動點P到F1、F2的距離之差為6,則曲線的方程為(    )
A.-="1(x>0)"B.-=1
C.-="1(y>0)"D.-=1

查看答案和解析>>

同步練習冊答案