【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.

(1)αβ,則sin αsin β

(2)若對角線相等,則梯形為等腰梯形;

(3)已知a,b,cd都是實(shí)數(shù),若abcd,則acbd.

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】試題分析:原命題是“若”,逆命題是“若 ”,否命題是“若”,逆否命題是“若”,互為逆否命題的命題是同真同假.

(1)由任意角的定義即可判斷真假;

(2)對角線相等未必是梯形;

(3)abcd,必有acbd,反之不成立.

試題解析:

(1)逆命題:若sin α=sin β,則αβ;

否命題:若αβ,則sin α≠sin β;

逆否命題:若sin α≠sin β,則αβ.

(2)逆命題:若梯形為等腰梯形,則它的對角線相等;否命題:若梯形的對角線不相等,則梯形不是等腰梯形;

逆否命題:若梯形不是等腰梯形,則它的對角線不相等.

(3)逆命題:已知ab,c,d都是實(shí)數(shù),若acbd,則ab,cd;

否定題:已知ab,c,d都是實(shí)數(shù),若abcd,則acbd

逆否命題:已知a,b,c,d都是實(shí)數(shù),若acbd,則abcd.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【天津市紅橋區(qū)重點(diǎn)中學(xué)八校2017屆高三4月聯(lián)考數(shù)學(xué)(文)】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn)

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn), 是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).①若直線的斜率為,求四邊形面積的最大值;

②當(dāng), 運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四個(gè)函數(shù)y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π為周期,在 上單調(diào)遞增的偶函數(shù)是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若處相切,試求的表達(dá)式;

(Ⅱ)若上是減函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅲ)證明不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)p:末位數(shù)字為9的整數(shù)能被3整除;

(2)p:有的素?cái)?shù)是偶數(shù);

(3)p:至少有一個(gè)實(shí)數(shù)x,使x210

(4)px,yR,x2y22x4y50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , 的中點(diǎn).

(1)求證:平面平面;

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, ,曲線上的任意一點(diǎn)滿足: .

(1)求點(diǎn)的軌跡方程;

(2)過點(diǎn)的直線與曲線交于, 兩點(diǎn),交軸于點(diǎn),設(shè), ,試問是否為定值?如果是定值,請求出這個(gè)定值,如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)p:不論m取何實(shí)數(shù),方程x2xm0必有實(shí)數(shù)根;

(2)q:存在一個(gè)實(shí)數(shù)x,使得x2x10;

(3)r:等圓的面積相等,周長相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知θ∈[0, ],直線xsinθ+ycosθ﹣1=0和圓C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦長為 ,則θ=

查看答案和解析>>

同步練習(xí)冊答案