設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大.記點(diǎn)的軌跡為曲線
(1)求點(diǎn)的軌跡方程;
(2)設(shè)圓,且圓心的軌跡上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說明理由.
(1)(2)當(dāng)運(yùn)動(dòng)時(shí),弦長(zhǎng)為定值2        
(1)依題意,距離等于到直線的距離,曲線是以原點(diǎn)為頂點(diǎn),為焦點(diǎn)的拋物線                                                                                                               (2分)
 曲線方程是                                                                                     (4分)
(2)設(shè)圓心,因?yàn)閳A
故設(shè)圓的方程                                                    (7分)
得:
設(shè)圓與軸的兩交點(diǎn)為,則 (10分)

在拋物線上,        (13分)
所以,當(dāng)運(yùn)動(dòng)時(shí),弦長(zhǎng)為定值2                                                          (14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個(gè)不同點(diǎn),求面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若中心在原點(diǎn),焦點(diǎn)在坐標(biāo)上的橢圓短軸端點(diǎn)是雙曲線y2x2=1的頂點(diǎn),且該橢圓的離心率與此雙曲線的離心率的乘積為1,則該橢圓的方程為    (   )
A.+y2="1" B.+x2="1" C.+y2="1" D.+x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)直線與橢圓相切。 (I)試將表示出來; (Ⅱ)若經(jīng)過動(dòng)點(diǎn)可以向橢圓引兩條互相垂直的切線,為坐標(biāo)原點(diǎn),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在東西方向直線延伸的湖岸上有一港口O,一艘機(jī)艇以40km/h的速度從O港出發(fā),先沿東偏北的某個(gè)方向直線前進(jìn)到達(dá)A處,然后改向正北方向航行,總共航行30分鐘因機(jī)器出現(xiàn)故障而停在湖里的P處,由于營(yíng)救人員不知該機(jī)艇的最初航向及何時(shí)改變的航向,故無法確定機(jī)艇停泊的準(zhǔn)確位置,試劃定一個(gè)最佳的弓形營(yíng)救區(qū)域(用圖形表示),并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)A(-1,0),B(1,0),P(x,y)()。設(shè)與x軸正方向的夾角分別為α、β、γ,若。
(I)求點(diǎn)P的軌跡G的方程;
(II)設(shè)過點(diǎn)C(0,-1)的直線與軌跡G交于不同兩點(diǎn)M、N。問在x軸上是否存在一點(diǎn),使△MNE為正三角形。若存在求出值;若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)P的軌跡是(   )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列結(jié)論,其中正確的是(   ).
A.漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程一定是
B.拋物線的準(zhǔn)線方程是
C.等軸雙曲線的離心率是
D.橢圓的焦點(diǎn)坐標(biāo)是,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)重合,則p的值為
A.-2B.2C.-4D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案