【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:

其中一個數(shù)字被污損.

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了位觀眾的周均學(xué)習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)

年齡x(歲)

周均學(xué)習成語知識時間y(小時)

由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為歲觀眾周均學(xué)習成語知識時間.

參考公式:,

【答案】(1) ;(2)詳見解析.

【解析】

試題(1)設(shè)被污損的數(shù)字為,則的所有可能取值共種等可能結(jié)果,根據(jù)題設(shè)條件可得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的” 的取值共個,即可利用古典概型的概率公式求解概率.

(2)根據(jù)最小二乘法的公式,求解 ,得出回歸直線方程,即可預(yù)測結(jié)果.

試題解析:

(1)設(shè)被污損的數(shù)字為,則的所有可能取值為:,,,,,,,種等可能結(jié)果,令 ,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的”的取值有,,,,,,,個,所以其概率為

(2)由表中數(shù)據(jù)得,,,∴.線性回歸方程為.可預(yù)測年齡為觀眾周均學(xué)習成語知識時間為小時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角,的對邊分別為,,已知 .

(1)求角;

(2)若點滿足,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二手經(jīng)銷商小王對其所經(jīng)營的型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下數(shù)據(jù):

下面是關(guān)于的折線圖:

(1)由折線圖可以看出,可以用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)求關(guān)于的回歸方程并預(yù)測某輛型號二手汽車當使用年數(shù)為9年時售價大約為多少?(、小數(shù)點后保留兩位有效數(shù)字).

(3)基于成本的考慮,該型號二手車的售價不得低于7118元,請根據(jù)(2)求出的回歸方程預(yù)測在收購該型號二手車時車輛的使用年數(shù)不得超過多少年?

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:

,. .

參考數(shù)據(jù):

,,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚傳統(tǒng)文化,某校舉行詩詞大賽.經(jīng)過層層選拔,最終甲乙兩人進入總決賽,爭奪冠軍.決賽規(guī)則如下:①比賽共設(shè)有五道題;②雙方輪流答題,每次回答一道,兩人答題的先后順序通過抽簽決定;③若答對,自己得1分;若答錯,則對方得1分;④先得3分者獲勝.已知甲、乙答對每道題的概率分別為,且每次答題的結(jié)果相互獨立.

(Ⅰ)若乙先答題,求甲3:0獲勝的概率;

(Ⅱ)若甲先答題,記乙所得分數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種汽車購買時費用為144萬元,每年應(yīng)交付保險費、養(yǎng)路費及汽油費共0.9萬元,汽車的維修費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.

)設(shè)使用n年該車的總費用(包括購車費用)為f(n),試寫出f(n)的表達式;

)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的所有棱長均為2, , 分別為的中點.

(1)證明: 平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線兩點, 的中點,過軸的垂線交點.

(1)證明:拋物線點處的切線與平行;

(2)是否存在實數(shù),使以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(為常數(shù)).

(1)當時,判斷的單調(diào)性,并用定義證明;

(2)若對任意,不等式恒成立,求的取值范圍;

(3)討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A1,0),圓E:(x+12+y2=16,點B是圓E上任意一點,線段AB的垂直平分線l與半徑EB相交于H.

1)當點B在圓上運動時,求動點H的軌跡г的方程:

2)過點A且與坐標軸不垂直的直線交軌跡г于、兩點,線段OAO為坐標原點)上是否存在點使得若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案