【題目】已知過原點的動直線與圓:相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數(shù),使得直線:與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
【答案】(1)(2)(3)存在,
【解析】
(1)將圓的一般方程整理為標準方程,由此得到圓心坐標;
(2)當直線斜率不存在,與圓無交點,可知斜率存在,設,將直線方程與圓的方程聯(lián)立,由可確定的范圍,并得到韋達定理的形式,從而利用表示出中點坐標,消去后即可得到軌跡方程;結合的范圍可確定的范圍,從而得到所求軌跡方程;
(3)由(2)可得的圖象,并確定直線所過的定點;由數(shù)形結合的方式可求得結果.
(1)圓:的方程整理得其標準方程:
圓的圓心坐標為
(2)當直線斜率不存在時,方程為,與圓無交點,不合題意
直線斜率存在,設
由得:
則,解得:
設,,中點
則,
消去參數(shù)得中點軌跡方程為:
軌跡的方程為:
(3)由(2)知:曲線是圓上的一段劣弧(如圖,不包括兩個端點),且,
直線:過定點
直線:與圓相切時,與沒有公共點
又,
當時,直線:與曲線只有一個交點
科目:高中數(shù)學 來源: 題型:
【題目】直線與曲線相切也與曲線相切,則稱直線為曲線和曲線的公切線,已知函數(shù),其中,若曲線和曲線的公切線有兩條,則的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一工廠對某條生產(chǎn)線加工零件所花費時間進行統(tǒng)計,得到如下表的數(shù)據(jù):
零件數(shù)x(個) | 10 | 20 | 30 | 40 | 50 |
加工時間y(分鐘) | 62 | 68 | 75 | 82 | 88 |
(1)從加工時間的五組數(shù)據(jù)中隨機選擇兩組數(shù)據(jù),求該兩組數(shù)據(jù)中至少有一組數(shù)據(jù)小于加工時間的均值的概率;
(2)若加工時間與零件數(shù)具有相關關系,求關于的回歸直線方程;若需加工個零件,根據(jù)回歸直線預測其需要多長時間.
(,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對40名小學六年級學生進行了問卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.已知在全部40人中隨機抽取1人,抽到肥胖學生的概率為.
常喝 | 不常喝 | 合計 | |
肥胖 | 3 | ||
不肥胖 | 5 | ||
合計 | 40 |
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認為肥胖與常喝碳酸飲料有關?請說明你的理由.
參考公式:
①卡方統(tǒng)計量,其中為樣本容量;
②獨立性檢驗中的臨界值參考表:
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為、,為相圓上一點,與軸交于,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)過右焦點的直線交橢圓于、兩點若的中點為,為原點,直線交直線于點.求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且.
(Ⅰ)若為線段的中點,求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點在線段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應納稅所得額 | 稅率(%) | 級數(shù) | 全月應納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調(diào)整前后關于的函數(shù)表達式;
(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調(diào)整后小紅的實際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設正數(shù)數(shù)列的前項和為,對于任意,是和的等差中項.
(1)求數(shù)列的通項公式;
(2)設,是的前項和,是否存在常數(shù),對任意,使恒成立?若存在,求取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com