【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費(fèi)用(萬(wàn)元)(即維修費(fèi)用之和除以使用年限),有如下的統(tǒng)計(jì)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點(diǎn)圖;
(2)求關(guān)于的線性回歸方程;
(3)估計(jì)使用年限為10年時(shí)所支出的年平均維修費(fèi)用是多少?
參考公式:
【答案】(1)見解析;(2);(3)12.38
【解析】
(1)根據(jù)題中數(shù)據(jù),可直接作出散點(diǎn)圖;
(2)根據(jù)散點(diǎn)圖,判斷兩變量呈線性相關(guān)關(guān)系,由公式,結(jié)合數(shù)據(jù)求出和,進(jìn)而可得出回歸方程;
(3)將代入(2)中方程,即可求出結(jié)果.
(1)畫出散點(diǎn)圖如圖所示:
(2)從散點(diǎn)圖可以看出,這些點(diǎn)大致分布在一條直線的附近,因此,兩變量呈線性相關(guān)關(guān)系.
由題表數(shù)據(jù)可得,,
由公式可得,,
即回歸方程是.
(3)由(2)可得,
當(dāng)時(shí),;
即,使用年限為10年時(shí)所支出的年平均維修費(fèi)用是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是
A. 平方米 B. 平方米
C. 平方米 D. 平方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防某流感病毒,某學(xué)校對(duì)教室進(jìn)行藥熏消毒,室內(nèi)每立方米空氣中的含藥量(單位:毫克)隨時(shí)間(單位:)的變化情況如下圖所示,在藥物釋放的過程中,與成正比:藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),根據(jù)圖中提供的信息,回答下列問題:
(1)寫出從藥物釋放開始,與之間的函數(shù)關(guān)系式.
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)教室學(xué)習(xí),那么從藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到教空?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有一個(gè)容量為300噸的水塔,每天從早上6時(shí)起到晚上10時(shí)止供應(yīng)該廠的生產(chǎn)和生活用水,已知該廠生活用水為每小時(shí)10噸,工業(yè)用水量W(噸)與時(shí)間t(小時(shí),且規(guī)定早上6時(shí)t=0)的函數(shù)關(guān)系為:W=100.水塔的進(jìn)水量分為10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí),每小時(shí)進(jìn)水量就增加10噸.若某天水塔原有水100噸,在開始供水的同時(shí)打開進(jìn)水管.
(1)若進(jìn)水量選擇為2級(jí),試問:水塔中水的剩余量何時(shí)開始低于10噸?
(2)如何選擇進(jìn)水量,既能始終保證該廠的用水(水塔中水不空)又不會(huì)使水溢出?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了緩解日益擁堵的交通狀況,不少城市實(shí)施車牌競(jìng)價(jià)策略,以控制車輛數(shù)量.某地車牌競(jìng)價(jià)的基本規(guī)則是:①“盲拍”,即所有參與競(jìng)拍的人都要網(wǎng)絡(luò)報(bào)價(jià)一次,每個(gè)人不知曉其他人的報(bào)價(jià),也不知道參與當(dāng)期競(jìng)拍的總?cè)藬?shù);②競(jìng)價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競(jìng)拍人的出價(jià)從高到低分配名額.某人擬參加2018年5月份的車牌競(jìng)拍,他為了預(yù)測(cè)最低成交價(jià),根據(jù)競(jìng)拍網(wǎng)站的數(shù)據(jù),統(tǒng)計(jì)了最近5個(gè)月參與競(jìng)拍的人數(shù)(見下表):
(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合競(jìng)拍人數(shù)y(萬(wàn)人)與月份編號(hào)t之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求y關(guān)于t的線性回歸方程:,并預(yù)測(cè)2018年5月份參與競(jìng)拍的人數(shù).
(2)某市場(chǎng)調(diào)研機(jī)構(gòu)從擬參加2018年5月份車牌競(jìng)拍人員中,隨機(jī)抽取了200人,對(duì)他們的擬報(bào)價(jià)價(jià)格進(jìn)行了調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
(i)求的值及這200位竟拍人員中報(bào)價(jià)大于5萬(wàn)元的人數(shù);
(ii)若2018年5月份車牌配額數(shù)量為3000,假設(shè)競(jìng)拍報(bào)價(jià)在各區(qū)間分布是均勻的,請(qǐng)你根據(jù)以上抽樣的數(shù)據(jù)信息,預(yù)測(cè)(需說(shuō)明理由)競(jìng)拍的最低成交價(jià).
參考公式及數(shù)據(jù):①,其中;
②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某工廠的一個(gè)車間抽取某種產(chǎn)品件,產(chǎn)品尺寸(單位:)落在各個(gè)小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這件產(chǎn)品尺寸的樣本平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(3)根據(jù)頻數(shù)分布對(duì)應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)過計(jì)算得,利用該正態(tài)分布,求.
附:①若隨機(jī)變量服從正態(tài)分布,則,;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)與圖象在上有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com