已知數(shù)列具有性質(zhì):①為整數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),
;當(dāng)為奇數(shù)時(shí),.
(1)若為偶數(shù),且成等差數(shù)列,求的值;
(2)設(shè)(且N),數(shù)列的前項(xiàng)和為,求證:;
(3)若為正整數(shù),求證:當(dāng)(N)時(shí),都有.
(1)是奇數(shù),則,, 若是偶數(shù),則,,
(2)根據(jù)數(shù)列的求和公式來證明不等式
(3)要證明對(duì)于當(dāng)(N)時(shí),都有.,則要對(duì)于其通項(xiàng)公式分情況來得到其通項(xiàng)公式的表達(dá)式證明。
【解析】
試題分析:⑴設(shè),,則:,
分兩種情況: 是奇數(shù),則,,
若是偶數(shù),則,,
⑵當(dāng)時(shí),
∴
⑶∵,∴,∴
由定義可知: ∴
∴
∴
∵,∴,
綜上可知:當(dāng)時(shí),都有
考點(diǎn):數(shù)列的運(yùn)用
點(diǎn)評(píng):本試題主要是考查了等差數(shù)列和數(shù)列的求和,以及數(shù)列與不等式的證明,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年北京市海淀區(qū)高三一模理科試題 題型:單選題
已知數(shù)列具有性質(zhì)P:對(duì)任意,
,與兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個(gè)命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則;
④若數(shù)列具有性質(zhì)P,則
其中真命題有
A.4個(gè) | B.3個(gè) | C.2個(gè) | D.1個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十二校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列具有性質(zhì):①為整數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.
(1)若為偶數(shù),且成等差數(shù)列,求的值;
(2)設(shè)(且N),數(shù)列的前項(xiàng)和為,求證:;
(3)若為正整數(shù),求證:當(dāng)(N)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十二校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列具有性質(zhì):①為正數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若成等差數(shù)列,求的值;
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:煙臺(tái)市英文學(xué)校2010高三一模考試?yán)砜茢?shù)學(xué)試題 題型:選擇題
已知數(shù)列
具有性質(zhì)P:對(duì)任意,,與
兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出
以下四個(gè)命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則;
④若數(shù)列具有性質(zhì)P,則
其中真命題有 ( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com