【題目】已知函數(shù)f(x)= ( e為自然對(duì)數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實(shí)數(shù)a的取值范圍為_____

【答案】(﹣∞,)∪(,+∞)

【解析】

根據(jù)函數(shù)式子得出f(﹣x)=f(x)=f(|x|),且在(0,+∞)單調(diào)遞增,把f(3a﹣2)f(a﹣1),轉(zhuǎn)化為|3a﹣2|>|a﹣1|,即8a2﹣10a+3>0,求解即得到實(shí)數(shù)a的取值范圍.

函數(shù)f(x)=e|x|+x2(e為自然對(duì)數(shù)的底數(shù))為偶函數(shù)

∴f(﹣x)=f(x)=f(|x|),且在(0,+∞)單調(diào)遞增,

∵f(3a﹣2)>f(a﹣1),

∴|3a﹣2|>|a﹣1|,

即8a2﹣10a+3>0,

實(shí)數(shù)a的取值范圍為aa,

故答案為:(﹣∞,)∪(,+∞)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}滿足 =pn+r(p,r為常數(shù)),其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若p=1,r=0,求證:{an}是等差數(shù)列;
(2)若p= ,a1=2,求數(shù)列{an}的通項(xiàng)公式;
(3)若a2015=2015a1 , 求pr的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
(1)已知函數(shù)f(x)在點(diǎn)(l,f(1))處與x軸相切,求實(shí)數(shù)m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(1)的結(jié)論下,對(duì)于任意的0<a<b,證明: ﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,.

1)證明: A1BD // 平面CD1B1;

2)求三棱柱ABDA1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,上頂點(diǎn)為焦點(diǎn)為,點(diǎn)是橢圓上異于點(diǎn)的不同的兩點(diǎn)且滿足直線與直線斜率之積為.

1為橢圓上不同于長軸端點(diǎn)的任意一點(diǎn),面積的最大值;

2)試判斷直線是否過定點(diǎn)若是,求出定點(diǎn)坐標(biāo);若否請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a0且滿足不等式22a+1>25a﹣2

(1)求實(shí)數(shù)a的取值范圍;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求的定義域;

(2)若函數(shù)的定義域?yàn)榉强占,求?shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, , 的中點(diǎn), 是棱 上的點(diǎn), , , , .

(1)求證:平面 底面 ;
(2)設(shè) ,若二面角 的平面角的大小為 ,試確定 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調(diào)性(只寫出結(jié)論即可);

(3)若對(duì)任意的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案