【題目】如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,.
(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
【答案】(1),見下.
(2)1
【解析】
試題分析:(1)要證明⊥平面,只要證明垂直于平面內(nèi)的兩條相交直線即可,由已知可證出⊥BD,取的中點為,通過證明四邊形為正方形可證⊥.由線面垂直的判定定理問題得證;(2)由已知是三棱柱ABD﹣A1B1D1的高,由此能求出三棱柱ABD﹣A1B1D1的體積
試題解析:(Ⅰ)∵四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=,由棱柱的性質(zhì)可得BB1和DD1平行且相等,故四邊形BB1D1D為平行四邊形,故有BD和B1D1平行且相等.而BD不在平面CB1D1內(nèi),而B1D1在平面CB1D1內(nèi),∴BD∥平面CB1D1.同理可證,A1BCD1為平行四邊形,A1B∥平面CB1D1.而BD和A1B是平面A1BD內(nèi)的兩條相交直線,故有平面A1BD∥平面CD1B1 .
(Ⅱ)由題意可得A1O為三棱柱ABD﹣A1B1D1的高.三角形A1AO中,由勾股定理可得A1O===1,
∴三棱柱ABD﹣A1B1D1的體積V=S△ABDA1O=A1O=×1=1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項 , ,n=1,2,3,….
(1)證明:數(shù)列 是等比數(shù)列;
(2)數(shù)列 的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實數(shù),給出命題p:函數(shù)f(x)=(a﹣ )x是R上的減函數(shù),命題q:關(guān)于x的不等式( )|x﹣1|≥a的解集為.
(1)若p為真命題,求a的取值范圍;
(2)若q為真命題,求a的取值范圍;
(3)若“p且q”為假命題,“p或q”為真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們稱滿足下面條件的函數(shù)y=f(x)為“ξ函數(shù)”:存在一條與函數(shù)y=f(x)的圖象有兩個不同交點(設(shè)為P(x1 , y1)Q(x2 , y2))的直線,y=(x)在x= 處的切線與此直線平行.下列函數(shù):
①y= ②y=x2(x>0)③y= ④y=lnx,
其中為“ξ函數(shù)”的是(將所有你認為正確的序號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ( e為自然對數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實數(shù)a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則A∩B=( )
A.{1,3}
B.{5,6}
C.{4,5,6}
D.{4,5,6,7}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com