已知橢圓C:()的短軸長為2,離心率為
(1)求橢圓C的方程
(2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點G、H,設P為橢圓C上一點,且滿足為坐標原點),當時,求實數(shù)的取值范圍?

(1);(2)

解析試題分析:(1)由題意知,所以,由此能求出橢圓C的方程;(2設直線方程為,聯(lián)立直線方程與橢圓方程,再由根的判別式和嘏達定理進行求解.
試題解析:(1)
(2)設直線,聯(lián)立橢圓,
條件轉換一下一下就是,根據(jù)弦長公式,得到
然后把把P點的橫縱坐標用表示出來,設,其中要把分別用直線代換,最后還要根據(jù)根系關系把消成,得,
然后代入橢圓,得到關系式,
所以,根據(jù)利用已經(jīng)解的范圍得到
考點:1、橢圓方程及幾何意義;2、直線與圓錐曲線的綜合問題;3、平面向量的坐標運算;4、平面向量的模.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的左、右焦點分別為,離心率,連接橢圓的四個頂點所得四邊形的面積為.
(1)求橢圓C的標準方程;
(2)設是直線上的不同兩點,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)已知是曲線上的兩點,若曲線上存在點,滿足為坐標原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓經(jīng)過點,一個焦點為
(1)求橢圓的方程;
(2)若直線軸交于點,與橢圓交于兩點,線段的垂直平分線與軸交于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
(。┊旤c為“準圓”與軸正半軸的交點時,求直線的方程并證明;
(ⅱ)求證:線段的長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線C:(a>0,b>0)的一個焦點坐標為(,0),離心率, A、B是雙曲線上的兩點,AB的中點M(1,2).
(1)求雙曲線C的方程;
(2)求直線AB方程;
(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點,那么A、B、C、D四點是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過的定點坐標;
(2)拋物線的焦點為,若過點的直線與拋物線相交于兩點,若,求直線的斜率;
(3)若過正半軸上點的直線與該拋物線交于兩點,為拋物線上異于的任意一點,記連線的斜率為試求滿足成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,焦點F的坐標為(1,0).
(1)求拋物線C的標準方程;
(2)設M、N是拋物線C的準線上的兩個動點,且它們的縱坐標之積為-4,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

雙曲線C與橢圓=1有相同的焦點,直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

同步練習冊答案