設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
Sn
}
的前n項(xiàng)和為Tn,求T2013的值.
(本小題滿分12分)
(1)設(shè)等差數(shù)列{an}的公差為d,
∵a1=2,a3=6,
a1=2
a3=a1+2d=6
,解得a1=2,d=2,
∴數(shù)列{an}的通項(xiàng)公式an=2+(n-1)•2=2n.
(2)∵a1=2,d=2,
Sn=
n(2+2n)
2
=n(n+1)

1
Sn
=
1
n(n+1)
=
1
n
-
1
n+1

∴T2013=T1+T2+T3+…+T2013
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
2013
-
1
2014
)

=1-
1
2014
=
2013
2014
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{an}滿足a1=5,an+1=+(n∈N+),則其{an}的前10項(xiàng)和為
A.50B.100C.150D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列{an}中,a2=2,an,an+1是方程x2-(2n+1)x+
1
bn
=0
的兩個(gè)根,則數(shù)列{bn}的前n項(xiàng)和Sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和Sn,a1=1,an+1=2Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=6,S4=30
(I)求數(shù)列{an}的通項(xiàng)公式.
(II)若bn=anlog
1
2
an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn+n•2n+1>50成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}中,a1=2,點(diǎn)(an-1,an)滿足y=2x-1,則a1+a2+…+a10=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}滿足:a1=a+2(a≥0),an+1=
an+a
,n∈N*
(1)若a=0,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|an+1-an|,數(shù)列的前n項(xiàng)和為Sn,證明:Sn<a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和Sn=2n-1,數(shù)列{bn}是以a1為首項(xiàng),公差為d(d≠0)的等差數(shù)列,且b1,b3,b9成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式
(2)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)令bn=an+2n,求數(shù)列{bn}前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案