【題目】已知函數(shù)f(x)=|3x﹣a|+|3x﹣6|,g(x)=|x﹣2|+1.
(Ⅰ)a=1時,解不等式f(x)≥8;
(Ⅱ)若對任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)a=1時,f(x)=|3x﹣1|+|3x﹣6|,
當(dāng)x≤ 時,不等式為:7﹣6x≥8,解得x≤﹣ ,∴x≤﹣ ,
當(dāng) <x<2時,不等式為:5≥8,無解,
當(dāng)x≥2時,不等式為6x﹣7≥8,解得x≥ ,∴x≥ ,
綜上,f(x)≥8的解集是(﹣∞,﹣ ]∪[ ,+∞).
(Ⅱ)∵對任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,
∴fmin(x)≥gmin(x),
∵f(x)=|3x﹣a|+|3x﹣6|≥|3x﹣a﹣(3x﹣6)|=|6﹣a|,g(x)=|x﹣2|+1≥1,
∴|6﹣a|≥1,
解得a≥7,或a≤5
【解析】(I)討論x的范圍,去絕對值符號解出不等式;(II)分別求出f(x),g(x)的最小值,令fmin(x)≥gmin(x)解出a的范圍.
【考點(diǎn)精析】本題主要考查了絕對值不等式的解法的相關(guān)知識點(diǎn),需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連續(xù)投擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,向量 與向量 的夾角記為α,則α 的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,數(shù)列 的前n項(xiàng)和為Sn , 數(shù)列{bn}的通項(xiàng)公式為bn=n﹣8,則bnSn的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[﹣2,1]使不等式a+1>f(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車進(jìn)駐城市,綠色出行引領(lǐng)時尚,某市有統(tǒng)計數(shù)據(jù)顯示,2016年該市共享單車用戶年齡等級分布如圖1所示,一周內(nèi)市民使用單車的頻率分布扇形圖如圖2所示,若將共享單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”,使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知在“經(jīng)常使用單車用戶”中有 是“年輕人”.
(Ⅰ)現(xiàn)對該市市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,采用隨機(jī)抽樣的方法,抽取一個容量為200的樣本,請你根據(jù)圖表中的數(shù)據(jù),補(bǔ)全下列2×2列聯(lián)表,并根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),判斷能有多大把握可以認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
使用共享單車情況與年齡列聯(lián)表
年輕人 | 非年輕人 | 合計 | |
經(jīng)常使用共享單車用戶 | 120 | ||
不常使用共享單車用戶 | 80 | ||
合計 | 160 | 40 | 200 |
(Ⅱ)將頻率視為概率,若從該市市民中隨機(jī)任取3人,設(shè)其中經(jīng)常使用共享單車的“非年輕人”人數(shù)為隨機(jī)變量X,求X的分布列與期望.
(參考數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E: ﹣ =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , |F1F2|=6,P是E右支上一點(diǎn),PF1與y軸交于點(diǎn)A,△PAF2的內(nèi)切圓在邊AF2上的切點(diǎn)為Q,若|AQ|= ,則E的離心率是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為 ,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線A與曲線C相交于A,B兩點(diǎn),已知定點(diǎn)P( ,0),當(dāng)α= 時,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是不相等的兩個正數(shù),且blna﹣alnb=a﹣b,給出下列結(jié)論:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正確結(jié)論的序號是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a1=2,且a1 , a2 , a3成等比數(shù)列.
(1)求數(shù)列{an}的通頂公式.
(2)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n.使得Sn>60n+800?若存在,求n的最小值:若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com