已知定點(diǎn)
,
,動點(diǎn)
到定點(diǎn)
距離與到定點(diǎn)
的距離的比值是
.
(Ⅰ)求動點(diǎn)
的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當(dāng)
時(shí),記動點(diǎn)
的軌跡為曲線
.
①若
是圓
上任意一點(diǎn),過
作曲線
的切線,切點(diǎn)是
,求
的取值范圍;
②已知
,
是曲線
上不同的兩點(diǎn),對于定點(diǎn)
,有
.試問無論
,
兩點(diǎn)的位置怎樣,直線
能恒和一個(gè)定圓相切嗎?若能,求出這個(gè)定圓的方程;若不能,請說明理由.
(Ⅰ)
,
方程表示的曲線是以
為圓心,
為半徑的圓.
(Ⅱ)當(dāng)
時(shí),曲線
的方程是
,曲線
表示圓,圓心是
,半徑是
.
①
.
②動直線
與定圓
相切.
試題分析:(Ⅰ)設(shè)動點(diǎn)
的坐標(biāo)為
,則由
,得
,
整理得:
.
,
當(dāng)
時(shí),則方程可化為:
,故方程表示的曲線是線段
的垂直平分線;
當(dāng)
時(shí),則方程可化為
,
即方程表示的曲線是以
為圓心,
為半徑的圓. 5分
(Ⅱ)當(dāng)
時(shí),曲線
的方程是
,
故曲線
表示圓,圓心是
,半徑是
.
①由
,及
有:
兩圓內(nèi)含,且圓
在圓
內(nèi)部.如圖所示,由
有:
,故求
的取值范圍就是求
的取值范圍.而
是定點(diǎn),
是圓上的動點(diǎn),故過
作圓
的直徑,得
,
,故
,
. 9分
②設(shè)點(diǎn)
到直線
的距離為
,
,
則由面積相等得到
,且圓的半徑
.
即
于是頂點(diǎn)
到動直線
的距離為定值,
即動直線
與定圓
相切.
點(diǎn)評:難題,本題確定軌跡方程,利用了“直接法”,對于參數(shù)
的討論,易出現(xiàn)遺漏現(xiàn)象。本題確定點(diǎn)到直線的距離,轉(zhuǎn)化成面積計(jì)算,不易想到。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,長軸是短軸的2倍且過點(diǎn)
,平行于
的直線
在y軸的截距為
,且交橢圓與
兩點(diǎn),
(1)求橢圓的方程;(2)求
的取值范圍;(3)求證:直線
、
與x軸圍成一個(gè)等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過雙曲線
,
的左焦點(diǎn)
作圓
:
的兩條切線,切點(diǎn)為
,
,雙曲線左頂點(diǎn)為
,若
,則雙曲線的漸近線方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)拋物線C:
的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若
,求線段
中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為
,當(dāng)焦點(diǎn)為
時(shí),求
的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線
的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線C:
與橢圓
共焦點(diǎn),
(Ⅰ)求
的值和拋物線C的準(zhǔn)線方程;
(Ⅱ)若P為拋物線C上位于
軸下方的一點(diǎn),直線
是拋物線C在點(diǎn)P處的切線,問是否存在平行于
的直線
與拋物線C交于不同的兩點(diǎn)A,B,且使
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,點(diǎn)
是橢圓
(
)的左焦點(diǎn),點(diǎn)
,
分別是橢圓的左頂點(diǎn)和上頂點(diǎn),橢圓的離心率為
,點(diǎn)
在
軸上,且
,過點(diǎn)
作斜率為
的直線
與由三點(diǎn)
,
,
確定的圓
相交于
,
兩點(diǎn),滿足
.
(1)若
的面積為
,求橢圓的方程;
(2)直線
的斜率是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
記橢圓
圍成的區(qū)域(含邊界)為Ω
n(n=1,2,…),當(dāng)點(diǎn)(x,y)分別在Ω
1,Ω
2,…上時(shí),x+y的最大值分別是M
1,M
2,…,則
M
n=( 。
A.0 | B. | C.2 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
拋物線
的準(zhǔn)線方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
的左、右焦點(diǎn)分別為
和
,左、右頂點(diǎn)分別為
和
,過焦點(diǎn)
與
軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為
,若
是
和
的等差中項(xiàng),則該雙曲線的離心率為
.
查看答案和解析>>