已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為(    )
A.B.C.D.
A

試題分析:由橢圓的定義可得,AF1+AF2=2a,BF1+BF2=2a,又因為F1+AF2+ BF1+BF2=,所以4a=,解得a=,又因為,所以c=1, ,所以橢圓方程為,故選A.
【考點】橢圓的性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的一個焦點為F(0,1),離心率,則該橢圓的標準方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率是,則的值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,且離心率為.斜率為的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左右焦點,上一點且軸垂直,直線的另一個交點為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:,點M與C的焦點不重合,若M關于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一個焦點在拋物線的準線上,則該橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左、右焦點分別為,上頂點為A,在x軸負半軸上有一點B,滿足三點的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點作斜率為k的直線與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案