【題目】對于數(shù)列,如果存在正整數(shù),使得對一切都成立,則稱數(shù)列等差數(shù)列.

(1)若數(shù)列2-等差數(shù)列,且前四項(xiàng)分別為2,-1,4,-3,求的值;

(2)若既是2-等差數(shù)列,又是3-等差數(shù)列,證明:是等差數(shù)列.

【答案】13;(2)證明見解析.

【解析】

1)根據(jù)數(shù)列的遞推關(guān)系寫出第8項(xiàng)和第9項(xiàng),即可得到答案;

2)根據(jù)既是2-等差數(shù)列,得,則均成等差數(shù)列,設(shè)等差數(shù)列公差分別為;因?yàn)?/span>3-等差數(shù)列,所以,則成等差數(shù)列,設(shè)公差為;取數(shù)列中的特殊項(xiàng)可得,并設(shè),從而得到,再根據(jù)的關(guān)系,將等差數(shù)列的通項(xiàng)寫成,即可證得結(jié)論.

1)∵,,,,

.

2)若既是2-等差數(shù)列,即,則均成等差數(shù)列,

設(shè)等差數(shù)列公差分別為,

3-等差數(shù)列,∴,則成等差數(shù)列,設(shè)公差為,

既是中的項(xiàng),也是中的項(xiàng),

既是中的項(xiàng),也是中的項(xiàng),

.

設(shè),則,

,,

,

綜上所得,

為等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓,與直線交于兩點(diǎn),記直線的斜率為,直線的斜率為.

(1)求橢圓方程;

(2)若,則三角形的面積是否為定值?若是,求出這個(gè)定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有分別寫有12,3,455張卡片.

1)從中隨機(jī)抽取2張,求兩張卡片上數(shù)字和為5的概率;

2)從中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,求抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為.

1)求拋物線的方程;

2若過點(diǎn)的直線與拋物線交于不同的兩點(diǎn),且以為直徑的圓過坐標(biāo)原點(diǎn),求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一名高二學(xué)生盼望2020年進(jìn)入某名牌大學(xué)學(xué)習(xí),假設(shè)該名牌大學(xué)有以下條件之一均可錄。孩2020年2月通過考試進(jìn)入國家數(shù)學(xué)奧賽集訓(xùn)隊(duì)(集訓(xùn)隊(duì)從2019年10月省數(shù)學(xué)競賽一等獎(jiǎng)中選拔):②2020年3月自主招生考試通過并且達(dá)到2020年6月高考重點(diǎn)分?jǐn)?shù)線,③2020年6月高考達(dá)到該校錄取分?jǐn)?shù)線(該校錄取分?jǐn)?shù)線高于重點(diǎn)線),該學(xué)生具備參加省數(shù)學(xué)競賽、自主招生和高考的資格且估計(jì)自己通過各種考試的概率如下表

省數(shù)學(xué)競賽一等獎(jiǎng)

自主招生通過

高考達(dá)重點(diǎn)線

高考達(dá)該校分?jǐn)?shù)線

0.5

0.6

0.9

0.7

若該學(xué)生數(shù)學(xué)競賽獲省一等獎(jiǎng),則該學(xué)生估計(jì)進(jìn)入國家集訓(xùn)隊(duì)的概率是0.2.若進(jìn)入國家集訓(xùn)隊(duì),則提前錄取,若未被錄取,則再按②、③順序依次錄。呵懊嬉呀(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達(dá)重點(diǎn)線才能錄。

(Ⅰ)求該學(xué)生參加自主招生考試的概率;

(Ⅱ)求該學(xué)生參加考試的次數(shù)的分布列及數(shù)學(xué)期望;

(Ⅲ)求該學(xué)生被該校錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線上.

(1)求圓的方程;

(2)已知過點(diǎn)的直線與圓相交截得的弦長為,求直線的方程;

(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為梯形,AB//CD,AB=AD=2CD=2,△ADP為等邊三角形.

(1)當(dāng)PB長為多少時(shí),平面平面ABCD?并說明理由;

(2)若二面角大小為150°,求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

1)求橢圓的方程;

2)設(shè)過點(diǎn)的直線與橢圓相交另一點(diǎn),若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出三個(gè)命題:①直線上有兩點(diǎn)到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點(diǎn)的連線平行于這個(gè)平面;③過空間一點(diǎn)必有唯一的平面與兩異面直線平行.正確的是( )

A. ②③B. ①②C. ①②③D.

查看答案和解析>>

同步練習(xí)冊答案