【題目】如圖,已知圓柱內(nèi)有一個(gè)三棱錐,為圓柱的一條母線,,為下底面圓的直徑,,.

1)在圓柱的上底面圓內(nèi)是否存在一點(diǎn),使得平面?證明你的結(jié)論.

2)設(shè)點(diǎn)為棱的中點(diǎn),,求平面與平面所成銳二面角的余弦值.

【答案】1)當(dāng)點(diǎn)為上底面圓的圓心時(shí),證明見解析.(2

【解析】

1)當(dāng)點(diǎn)為上底面圓的圓心時(shí),平面,取上底面圓的圓心為,連接,,,先證明四邊形為平行四邊形,可得到,然后可得四邊形為平行四邊形,然后得到即可.

2)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,算出平面的法向量,平面的一個(gè)法向量為,然后算出答案即可.

1)當(dāng)點(diǎn)為上底面圓的圓心時(shí),平面.

證明如下:

如圖,取上底面圓的圓心為,連接,,,

,.

所以四邊形為平行四邊形,

所以,所以.

,所以四邊形為平行四邊形,

所以.

因?yàn)?/span>平面平面,

所以平面.

故點(diǎn)為上底面圓的圓心時(shí),平面.

2)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.

于是可得,,,,,

所以,.

設(shè)平面的一個(gè)法向量為,

,得.

,則可取.

取平面的一個(gè)法向量為.

設(shè)平面與平面所成的銳二面角為,則

,

故平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測(cè)量其直徑后,整理得到下表:

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(I)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):

;

;

.

判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級(jí)為甲;若僅滿足其中兩個(gè),則等級(jí)為乙,若僅滿足其中一個(gè),則等級(jí)為丙;若全部都不滿足,則等級(jí)為了.試判斷設(shè)備的性能等級(jí).

(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”.

①?gòu)脑O(shè)備的生產(chǎn)流水線上隨機(jī)抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望

②從樣本中隨意抽取2個(gè)零件,求其中次品個(gè)數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;

若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們正處于一個(gè)大數(shù)據(jù)飛速發(fā)展的時(shí)代,對(duì)于大數(shù)據(jù)人才的需求也越來越大,其崗位大致可分為四類:數(shù)據(jù)開發(fā)、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)產(chǎn)品.某市2019年這幾類工作崗位的薪資(單位:萬(wàn)元/月)情況如下表所示:

薪資

崗位

數(shù)據(jù)開發(fā)

數(shù)據(jù)分析

數(shù)據(jù)挖掘

數(shù)據(jù)產(chǎn)品

由表中數(shù)據(jù)可得該市各類崗位的薪資水平高低情況為(

A.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析

B.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析

C.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析>數(shù)據(jù)產(chǎn)品

D.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析>數(shù)據(jù)開發(fā)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓柱內(nèi)有一個(gè)三棱錐為圓柱的一條母線,為下底面圓的直徑,.

1)在圓柱的上底面圓內(nèi)是否存在一點(diǎn),使得平面?證明你的結(jié)論.

2)設(shè)點(diǎn)為棱的中點(diǎn),,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組為了研究一種治療新冠肺炎患者的新藥的效果,選50名患者服藥一段時(shí)間后,記錄了這些患者的生理指標(biāo)的數(shù)據(jù),并統(tǒng)計(jì)得到如下的列聯(lián)表(不完整):

合計(jì)

12

36

7

合計(jì)

其中在生理指標(biāo)的人中,設(shè)組為生理指標(biāo)的人,組為生理指標(biāo)的人,他們服用這種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:

組:10,111213,1415,16

組:12,1315,16,17,1425

(Ⅰ)填寫上表,并判斷是否有95%的把握認(rèn)為患者的兩項(xiàng)生理指標(biāo)有關(guān)系;

(Ⅱ)從,兩組隨機(jī)各選1人,組選出的人記為甲,組選出的人記為乙,求甲的康復(fù)時(shí)間比乙的康復(fù)時(shí)間長(zhǎng)的概率.

附:,其中

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)設(shè)a,b∈M,證明:|ab|+1>|a|+|b|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,AB是圓Ox2y21的直徑,且點(diǎn)A在第一象限;圓O1(xa)2y2r2(a0)與圓O外離,線段AO1與圓O1交于點(diǎn)M,線段BM與圓O交于點(diǎn)N,且,則a的取值范圍為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橋牌是一種高雅、文明、競(jìng)技性很強(qiáng)的智力性游戲.近年來,在中國(guó)橋牌協(xié)會(huì)橋牌進(jìn)校園活動(dòng)的號(hào)召下,全國(guó)各地中小學(xué)紛紛積極加入到青少年橋牌推廣的大營(yíng)中.為了了解學(xué)生對(duì)橋牌這項(xiàng)運(yùn)動(dòng)的興趣,某校從高一學(xué)生中隨機(jī)抽取了200名學(xué)生進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)之比為23,男生中有50人對(duì)橋牌有興趣,女生中有20人對(duì)橋牌不感興趣.

1)完成2×2列聯(lián)表,并回答能否有的把握認(rèn)為該校高一學(xué)生對(duì)橋牌是否感興趣與性別有關(guān)?

感興趣

不感興趣

合計(jì)

50

——

——

——

20

——

合計(jì)

——

——

200

2)從被調(diào)查的對(duì)橋牌有興趣的學(xué)生中利用分層抽樣抽取6名學(xué)生,再?gòu)?/span>6名學(xué)生中抽取2名學(xué)生作為橋牌搭檔參加雙人賽.求抽到一名男生與一名女生的概率.

附:參考公式,其中

臨界值表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案