【題目】已知點(diǎn)是拋物線上一點(diǎn),為的焦點(diǎn).
(1)若,是上的兩點(diǎn),證明:,,依次成等比數(shù)列.
(2)過作兩條互相垂直的直線與的另一個(gè)交點(diǎn)分別交于,(在的上方),求向量在軸正方向上的投影的取值范圍.
【答案】(1)詳見解析;(2).
【解析】
(1)由在拋物線上求P,再利用焦半徑公式求,,,再利用等比數(shù)列定義證明即可(2)設(shè)直線的方程為,與聯(lián)立,得,由,求k的范圍,并求得P坐標(biāo),同理求得Q坐標(biāo),則向量在軸正方向上的投影為,求函數(shù)的范圍即求得結(jié)果
(1)證明:在拋物線上,,.
,,,
,,依次成等比數(shù)列.
(2)設(shè)直線的方程為,與聯(lián)立,得
則 ,,
設(shè) ,,則,即
在的上方,則.
以代,得,
則向量在軸正方向上的投影為,
設(shè)函數(shù),則在上單調(diào)遞減,在上單調(diào)遞增,從而,
故向量在軸正方向上的投影的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), , 為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若函數(shù)存在兩個(gè)零點(diǎn),求的取值范圍;
(Ⅱ)若對(duì)任意, , 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)是一種反映和評(píng)價(jià)空氣質(zhì)量的方法,指數(shù)與空氣質(zhì)量對(duì)應(yīng)如下表所示:
如圖是某城市2018年12月全月的指數(shù)變化統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖判斷,下列結(jié)論正確的是( )
A. 整體上看,這個(gè)月的空氣質(zhì)量越來越差
B. 整體上看,前半月的空氣質(zhì)量好于后半月的空氣質(zhì)量
C. 從數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,,,在線段上,是線段的中點(diǎn),沿把平面折起到平面的位置,使平面,則下列命題正確的編號(hào)為______.
①二面角的余弦值為;
②設(shè)折起后幾何體的棱的中點(diǎn),則平面;
③;
④四棱錐的內(nèi)切球的表面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是平面內(nèi)兩個(gè)不共線的非零向量,,,,且三點(diǎn)共線.
(1)求實(shí)數(shù)的值;
(2)已知,點(diǎn),若四點(diǎn)按逆時(shí)針順序構(gòu)成平行四邊形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線是圓與圓的公共弦所在直線方程,且圓的圓心在直線上.
(1)求公共弦的長度;
(2)求圓的方程;
(3)過點(diǎn)分別作直線,,交圓于,,,四點(diǎn),且,求四邊形面積的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個(gè)程序框圖,若輸入,,則輸出的等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)滿足: , .若方程有5個(gè)實(shí)根,則正數(shù)a的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com