【題目】設函數(shù) ( 且 ),當點 是函數(shù) 圖象上的點時,點 是函數(shù) 圖象上的點.
(1)寫出函數(shù) 的解析式;
(2)把 的圖象向左平移a個單位得到 的圖象,函數(shù) ,是否存在實數(shù) ,使函數(shù) 的定義域為 ,值域為 .如果存在,求出 的值;如果不存在,說明理由;
(3)若當 時,恒有 ,試確定a的取值范圍.
【答案】
(1)解:設點Q的坐標為 ,
則 ,即 .
點 在函數(shù) 圖象上,
,即 ,
.
故答案為:.
(2)解: ,
,故
在 上單調遞增, ,即 為 的兩相異的非負的實數(shù)
即 x 2 + 2 x = x ,解得 m = 0 , n = 1。
(3)解:函數(shù) ,
由題意 ,則 ,
又 ,且
,
,
又 對稱軸為x=2a,
,則 在 上為增函數(shù),
函數(shù) 在 上為減函數(shù),
從而 ,
又 ,則 ,
.
【解析】(1)根據已知條件設出點O的坐標,分別將橫坐標和縱坐標代入函數(shù)f(x)表達式中,即可求出y=g(x)的表達式。
(2)根據y=g(x)的圖像得出y=h(x)的圖像,再將函數(shù)h(x)打入函數(shù)F(x)的表達式中判斷值域、定義域的取值范圍。
(3)要判斷恒成立,即判斷.
【考點精析】通過靈活運用函數(shù)的值域,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質是相同的即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F(xiàn)分別是AP,AD的中點.
求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判定下列函數(shù)的奇偶性.
(1)f(x)= ;
(2)f(x)= ;
(3)f(x)= ;
(4)f(x)=|x+1|+|x-1|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC所在平面外有一點P,D,E分別是PB與AB上的點,過D,E作平面平行于BC,試畫出這個平面與其他各面的交線,并說明畫法的依據.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) ( 且 )是定義域為R的奇函數(shù).
(1)求k的值;
(2)若 ,不等式 對 恒成立,求實數(shù)t的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A= ,B= ,從A到B的對應關系f不是映射的是( )
A.f:x→y=
B.f:x→y=
C.f:x→y=
D.f:x→y=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著“全面二孩”政策推行,我市將迎來生育高峰.今年新春伊始,宜城各醫(yī)院產科就已經是一片忙碌,至今熱度不減.衛(wèi)生部門進行調查統(tǒng)計,期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”;在市第一醫(yī)院,共有40個猴寶寶降生,其中20個是“二孩”寶寶;市婦幼保健院共有30個猴寶寶降生,其中10個是“二孩”寶寶. (I)從兩個醫(yī)院當前出生的所有寶寶中按分層抽樣方法抽取7個寶寶做健康咨詢.
①在市第一醫(yī)院出生的一孩寶寶中抽取多少個?
②若從7個寶寶中抽取兩個寶寶進行體檢,求這兩個寶寶恰出生不同醫(yī)院且均屬“二孩”的概率;
(Ⅱ)根據以上數(shù)據,能否有85%的把握認為一孩或二孩寶寶的出生與醫(yī)院有關?
附:
P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
k0 | 0.708 | 1.323 | 2.072 | 2.706 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com